Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T05:07:51.476Z Has data issue: false hasContentIssue false

Is there an MCI reversion to cognitively normal? Analysis of Alzheimer's disease biomarkers profiles

Published online by Cambridge University Press:  26 September 2014

Moon Ho Park*
Affiliation:
Department of Neurology, Korea University Medical College and Korea University Ansan Hospital, South Korea
Changsu Han
Affiliation:
Department of Psychiatry, Korea University Medical College and Korea University Ansan Hospital, South Korea
*
Correspondence should be addressed to: Dr. Moon Ho Park, MD, PhD, Department of Neurology, Korea University Ansan Hospital, 516, Gojan-dong, Danwon-gu, Ansan-si, Gyeonggi-do, South Korea. Phone: +82-31-412-5150; Fax: +82-31-412-5154. Email: parkmuno@yahoo.co.kr.

Abstract

Background:

We investigated the characteristics of Alzheimer's disease (AD) biomarkers for mild cognitive impairment (MCI) reversion to cognitively normal (CN).

Methods:

Of a total of 1,233 participants from the ADNI database, 42 participants with MCI reversion to CN (MCIr), 778 with MCI, and 413 CN were obtained. We evaluated demographics, clinical outcomes, medication use, MCI type, and AD biomarkers, including genetic, cerebrospinal fluid, imaging, and neuropsychological data.

Results:

This study showed that the differences between MCIr and CN were only age, Mini-Mental State Examination, and Clinical Dementia Rating – Sum of Boxes, but the differences between MCIr and MCI were not only clinical outcomes but also AD biomarkers, including genetic, cerebrospinal fluid, imaging, and neuropsychological data. Overall, MCIr may be similar to CN and not MCI in clinical characteristics.

Conclusions:

With assessment of MCI reversion to CN, the possibility of false-positive errors should be considered. With the assistance of AD biomarkers, MCI can be evaluated more accurately than the conventional criteria.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ADNI. (2013a). ADNI prcedures, protocols and grants. In Alzheimer's Disease Neuroimaging Initiative. Available at: http://www.adni-info.org/Scientists/ADNIStudyProcedures.aspx; last accessed 17 November 2013.Google Scholar
ADNI. (2013b). Download study data. In Alzheimer’ Disease Neuroimaging Initiative. Available at: https://ida.loni.usc.edu/pages/access/studyData.jsp; last accessed 17 November 2013.Google Scholar
Albert, M. S. et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's and Dementia, 7, 270279. doi:10.1016/j.jalz.2011.03.008.CrossRefGoogle ScholarPubMed
Busse, A., Hensel, A., Guhne, U., Angermeyer, M. C. and Riedel-Heller, S. G. (2006). Mild cognitive impairment: long-term course of four clinical subtypes. Neurology, 67, 21762185. doi:10.1212/01.wnl.0000249117.23318.e1.CrossRefGoogle ScholarPubMed
de Jager, C. A. and Budge, M. M. (2005). Stability and predictability of the classification of mild cognitive impairment as assessed by episodic memory test performance over time. Neurocase, 11, 7279. doi:10.1080/13554790490896820.CrossRefGoogle ScholarPubMed
Edmonds, E. C. et al. (2014). Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimer's and Dementia. Epublished ahead of print, doi:10.1016/j.jalz.2014.03.005.Google Scholar
Fisk, J. D., Merry, H. R. and Rockwood, K. (2003). Variations in case definition affect prevalence but not outcomes of mild cognitive impairment. Neurology, 61, 11791184.Google Scholar
Gallassi, R. et al. (2010). Are subjective cognitive complaints a risk factor for dementia? Neurological Science, 31, 327336. doi:10.1007/s10072-010-0224-6.Google Scholar
Ganguli, M., Dodge, H. H., Shen, C. and DeKosky, S. T. (2004). Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology, 63, 115121.Google Scholar
Ganguli, M. et al. (2011). Outcomes of mild cognitive impairment by definition: a population study. Archives of Neurology, 68, 761767. doi:10.1001/archneurol.2011.101.Google Scholar
Han, J. W. et al. (2012). Predictive validity and diagnostic stability of mild cognitive impairment subtypes. Alzheimer's and Dementia, 8, 553559. doi:10.1016/j.jalz.2011.08.007.Google Scholar
Jack, C. R. Jr., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurology, 9, 119128. doi:10.1016/S1474-4422(09)70299-6.CrossRefGoogle ScholarPubMed
Klekociuk, S. Z., Summers, J. J., Vickers, J. C. and Summers, M. J. (2014). Reducing false positive diagnoses in mild cognitive impairment: the importance of comprehensive neuropsychological assessment. European Journal of Neurololgy, 21, 1330e1383. doi:10.1111/ene.12488.Google Scholar
Koepsell, T. D. and Monsell, S. E. (2012). Reversion from mild cognitive impairment to normal or near-normal cognition: risk factors and prognosis. Neurology, 79, 15911598. doi:10.1212/WNL.0b013e31826e26b7.Google Scholar
Larrieu, S. et al. (2002). Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology, 59, 15941599.Google Scholar
Lezak, M. D., Howieson, D. B., Bigler, E. D. and Tranel, D. (2012). Neuropsychological Assessment. Oxford, UK: Oxford University Press.Google Scholar
Lopez, O. L. et al. (2012). Incidence of mild cognitive impairment in the Pittsburgh Cardiovascular Health Study – Cognition Study. Neurology, 79, 15991606. doi:10.1212/WNL.0b013e31826e25f0.CrossRefGoogle ScholarPubMed
Mitchell, A. J. and Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119, 252265. doi:10.1111/j.1600-0447.2008.01326.x.Google Scholar
Mormino, E. C. et al. (2009). Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain, 132, 13101323. doi:10.1093/brain/awn320.CrossRefGoogle ScholarPubMed
Nordlund, A., Rolstad, S., Klang, O., Edman, A., Hansen, S. and Wallin, A. (2010). Two-year outcome of MCI subtypes and aetiologies in the Goteborg MCI study. Journal of Neurology, Neurosurgery, and Psychiatry, 81, 541546. doi:10.1136/jnnp.2008.171066.CrossRefGoogle ScholarPubMed
Olazaran, J. et al. (2011). Mild cognitive impairment and dementia in primary care: the value of medical history. Family Practice, 28, 385392. doi:10.1093/fampra/cmr005.CrossRefGoogle ScholarPubMed
Petersen, R. C. (2011). Clinical practice. Mild cognitive impairment. New England Journal of Medicine, 364, 22272234. doi:10.1056/NEJMcp0910237.Google Scholar
Petersen, R. C. et al. (2010). Alzheimer's Disease neuroimaging initiative (ADNI): clinical characterization. Neurology, 74, 201209. doi:10.1212/WNL.0b013e3181cb3e25.Google Scholar
Reitz, C., Brayne, C. and Mayeux, R. (2011). Epidemiology of Alzheimer's disease. Nature Reviews. Neurology, 7, 137152. doi:10.1038/nrneurol.2011.2.Google Scholar
Roberts, R. O. et al. (2014). Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology, 82, 317325. doi:10.1212/WNL.0000000000000055.Google Scholar
Rosen, C., Hansson, O., Blennow, K. and Zetterberg, H. (2013). Fluid biomarkers in Alzheimer's disease – current concepts. Molecular Neurodegeneration, 8, 20. doi:10.1186/1750-1326-8-20.Google Scholar
Shaw, L. M. et al. (2009). Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Annals of Neurology, 65, 403413. doi:10.1002/ana.21610.CrossRefGoogle ScholarPubMed
Sperling, R. A. et al. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7, 280292. doi:10.1016/j.jalz.2011.03.003.Google Scholar
Tyas, S. L. et al. (2007). Transitions to mild cognitive impairments, dementia, and death: findings from the Nun Study. American Journal of Epidemiology, 165, 12311238. doi:10.1093/aje/kwm085.Google Scholar
Zonderman, A. B. and Dore, G. A. (2014). Risk of dementia after fluctuating mild cognitive impairment: when the yo-yoing stops. Neurology, 82, 290291. doi:10.1212/WNL.0000000000000065.Google Scholar