Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T17:39:03.908Z Has data issue: false hasContentIssue false

Effects of Garlic Mustard (Alliaria petiolata) Removal on the Abundance of Entomopathogenic Fungi

Published online by Cambridge University Press:  20 January 2017

Regina Vaicekonyte
Affiliation:
Department of Biology, Bard College, 30 Campus Road, Annandale-on-Hudson, NY 12504
Felicia Keesing*
Affiliation:
Department of Biology, Bard College, 30 Campus Road, Annandale-on-Hudson, NY 12504
*
Corresponding author's E-mail: keesing@bard.edu

Abstract

Garlic mustard is an invasive, exotic herb that is now widespread in North America. Recent research has shown that garlic mustard exudes biochemical compounds that inhibit the growth of entomopathogenic fungi. We investigated how the removal of garlic mustard would affect the abundance of entomopathogenic fungi in forest soils in eastern New York. Using a standard bioassay, we compared the abundance of entomopathogenic fungi in soil with and without garlic mustard both before and 45 d after garlic mustard had been experimentally removed. In soil from which garlic mustard had been experimentally removed 45 d earlier, the abundance of entomopathogenic fungi was restored to levels found in soil with no history of garlic mustard. These results suggest it is possible to increase the abundance of entomopathogenic fungi in the soil in a short time by eradicating garlic mustard plants from an invaded area. Recolonization by entomopathogenic fungi could be beneficial to humans if it increases the mortality of arthropods that are vectors of infectious disease, such as blacklegged ticks, but harmful if it increases the mortality of arthropods that provide valuable ecosystem services, such as bees and ants.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alves, S. B., Marchini, L. C., Pereirea, R. M., and Baumgratz, L. L. 2009. Effects of some insect pathogens on the Africanized honey bee, Apis mellifera L. (Hym., Apidae). J. Appl. Entomol. 120:559564.Google Scholar
Barto, E. K. and Cipollini, D. 2009. Half lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere. 76(1):7175.Google Scholar
Baverstock, J., Roy, H. E., Clark, S. J., and Pell, J. 2004. Effect of fungal infection on the reproductive potential of aphids and their progeny. Page 68 in Hokkanen, H., ed. Abstracts of the 37th Annual Meeting of the Society for Invertebrate Pathology: 7th International Conference on Bacillus thuringiensis. Helsinki, Finland Society for Invertebrate Pathology, F-28.Google Scholar
Benjamin, M. A., Zhioua, E., and Ostfeld, R. S. 2002. Laboratory and field evaluation of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) for controlling questing adult Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 39:723728.Google Scholar
Bidochka, M. J., Kasperski, J. E., and Wild, G. A. M. 1998. Occurrence of the entomopathogenic fungus Metarhizium anisopliae and Beauveria bassiana in soils from temperate and near-northern habitats. Can. J. Bot. 76:11981204.Google Scholar
Bowden, S. R. 1971. American white butterflies (Pieridae) and English food plants. J. Lepid. Soc. 25:612.Google Scholar
Brown, P. D. and Morra, M. J. 1997. Control of soil-borne plant pests using glucosinolate-containing plants. Adv. Agron. 61:167231.Google Scholar
Brussaard, L., Behan-Peletier, V. M., Bignell, D. E., et al. 1997. Biodiversity and ecosystem functioning in soil. Ambio. 26:562570.Google Scholar
Cantor, A., Hale, A., Aaron, J., Traw, M. B., and Kalisz, S. 2011. Low allelochemical concentrations detected in garlic mustard-invaded forest soils inhibit fungal growth and AMF spore germination [online ahead of print March 30, 2011]. Biol. Invasions. 13(12):111 doi:10.1007/s10530-011-9986-x.Google Scholar
Chew, F. S. 1988. Searching for defensive chemistry in the Cruciferae, or, do glucosinolates always control interactions of Cruciferae and their potential herbivores and symbionts? No. Pages 81111 in Spencer, K. C., ed. Chemical Mediation of Coevolution. San Diego Academic.Google Scholar
Cipollini, D. 2002. Variation in the expression of chemical defenses in Alliaria petiolata (Brassicaceae) in the field and common garden. Am. J. Bot. 89:14221430.Google Scholar
Cipollini, D. and Gruner, B. 2007. Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata . J. Chem. Ecol. 33:8594.Google Scholar
Daxenbichler, M. E., Spencer, G. F., Carlson, D. G., Rose, G. B., Brinker, A. M., and Powell, R. G. 1991. Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry. 30:26232638.Google Scholar
Elliot, S. L., Blanford, S., and Thomas, M. B. 2002. Host-pathogen interaction in a varying environment, behavioural fever and fitness. Proc. R. Soc. Lond. B Biol. Sci. 269:15991607.Google Scholar
Faber, M. 1992. Soil Survey of Dutchess County. Ithaca, NY U.S. Department of Agriculture Natural Resources Conservation Service. 357 p.Google Scholar
Fahey, J. W., Zalcmann, A. T., and Talalay, P., P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 56:551.Google Scholar
Gindin, G., Barash, I., Raccah, B., Singer, S., Ben-Ze'ev, I. S., and Klein, M. 1996. The potential of some entomopathogenic fungi as biocontrol agents against the onion thrips, Thrips tabaci and the western flower thrips, Frankliniella occidentalis . Folia Entomol. Hung. 57(Suppl.):3742.Google Scholar
Hajek, A. E. and St. Leger, R. J. 1994. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39:293322.Google Scholar
Haribal, M. and Renwick, J. A. A. 2001. Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata . J. Chem. Ecol. 27:15851594.Google Scholar
Haromoto, E. R. and Gallandt, E. R. 2005. Brassica cover cropping, I: Effects on weed and crop establishment. Weed Sci. 53:695701.Google Scholar
Hornbostel, V. L., Zhioua, E., Benjamin, M. A., Ginsberg, H. S., and Ostfeld, R. S. 2005. Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs. Exp. Appl. Acarol. 35:301316.Google Scholar
Hughes, W. O. H., Thomsen, L., Eilenberg, J., and Boomsma, J. J. 2004. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J. Invertebr. Pathol. 85:4653.Google Scholar
Keesing, F., Oberoi, P., Vaicekonyte, R., Gowen, K., Henry, L., Mount, S., Johns, P., and Ostfeld, R. S. 2011. Effects of garlic mustard (Alliaria petiolata) on entomopathogenic fungi. Ecoscience. 18:164168.Google Scholar
Keller, S. and Zimmerman, G. 1989. Mycopathogens of soil insects. Pages 240270 in Wilding, N., Collins, N. M., Hammond, P. M., and Webber, J. F., eds. Insect–Fungus Interactions. London, UK Academic.Google Scholar
Kirkland, B. H., Westwood, G. S., and Keyhani, N. O. 2004. Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variablis, Rhipicephalus sanguineus, and Ixodes scapularis . J. Med. Entomol. 41:705711.Google Scholar
Lankau, R. A. 2011. Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. New Phytol. 189:536548.Google Scholar
Levine, J. M., Vilà, M., D'Antonio, C. M., Dukes, J. S., Grigulis, K., and Lavorel, S. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 270:775781.Google Scholar
McCarthy, B. C. and Hanson, S. L. 1998. An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae). Castanea. 63:6873.Google Scholar
Nuzzo, V. 1999. Invasion pattern of the herb garlic mustard (Alliaria petiolata) in high quality forests. Biol. Invasions. 1:169179.Google Scholar
Oi, D. H. and Pereira, R. M. 1993. Ant behavior and microbial pathogens (Hymenoptera: Formicidae). Fla. Entomol. 76:6374.Google Scholar
Onofre, S. B., Miniuk, C. M., de Barros, N. M., and Azevedo, J. L. 2001. Pathogenicity of four strains of entomopathogenic fungi against the bovine tick Boophilus microplus . Am. J. Vet. Res. 62:1478–1470.Google Scholar
Ostfeld, R. S., Keesing, F., and LoGiudice, K. 2006a. Community ecology meets epidemiology: the case of Lyme disease. Pages 2840 in Collinge, S. K., and Ray, C., eds. Disease Ecology: Community Structure and Pathogen Dynamics. Oxford, UK Oxford University Press.Google Scholar
Ostfeld, R. S., Price, A., Hornbostel, V. L., Benjamin, M. A., and Keesing, F. 2006b. Controlling ticks and tick-borne zoonoses with biological and chemical agents. Bioscience. 56:383394.Google Scholar
Porter, A. 1994. Implications of introduced garlic mustard (Alliaria petiolata) in the habitat of Pieris virginiensis (Pieridae). J. Lepid. Soc. 48:171172.Google Scholar
Prati, D. and Bossdorf, O. 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am. J. Bot. 91:285288.Google Scholar
Roberts, K. J. and Anderson, R. C. 2001. Effect of garlic mustard [Alliaria petiolata (Bieb. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am. Midl. Nat. 146:146152.Google Scholar
Rodgers, V. L., Stinson, K. A., and Finzi, A. C. 2008. Ready or not, garlic mustard is moving in: Alliaria petiolata as a member of eastern North American forests. Bioscience. 58:426436.Google Scholar
Roy, H. E., Steinkraus, D. C., Eilenberg, J., Hajek, A. E., and Pell, J. K. 2006. Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu. Rev. Entomol. 51:331357.Google Scholar
Samish, M., Gindin, G., Alekseev, E., and Glazer, I. 2001. Pathogenicity of entomopathogenic fungi to different developmental stages of Rhipicephalus sanguineus (Acari: Ixodidae). J. Parasitol. 87:13551359.Google Scholar
Samish, M., Ginsberg, H., and Glazer, I. 2008. Anti-tick biological control agents: assessment and future perspectives. Pages 447469 in Bowman, A. S., and Nuttall, P. A., eds. Ticks: Biology, Disease and Control. Cambridge, UK Cambridge University Press.Google Scholar
Samson, R. A., Evans, H. C., and Latg, J. P. 1988. Atlas of Entomopathogenic Fungi. New York Springer-Verlag. 187 p.Google Scholar
Santos, A. V., de Oliveira, B. L., and Samuels, R. I. 2007. Selection of entomopathogenic fungi for use in combination with sub-lethal doses of imidacloprid: perspectives for the control of the leaf-cutting ant Atta sexdensrubropilosa Forel (Hymenoptera: Formicidae). Mycopathologia. 163:233240.Google Scholar
Scholte, E. J., Ng'habi, K., Kihonda, J., et al. 2005. An entomopathogenic fungus for control of adult African malaria mosquitoes. Science. 308:16411642.Google Scholar
Shah, P. A. and Pell, J. K. 2003. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61:413423.Google Scholar
Stinson, K. A., Campbell, S. A., Powell, J. R., et al. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4(5):e140 doi:10.1371/journal.pbio.0040140.Google Scholar
Stinson, K. A., Kaufman, S., Durbin, L., and Lowenstein, F. 2007. Impacts of garlic mustard invasion on a forest understory community. Northeast. Nat. 14:7388.Google Scholar
Tuininga, A. R., Miller, J. L., Morath, S. U., et al. 2009. Isolation of entomopathogenic fungi from soils and Ixodes scapularis (Acari: Ixodidae) ticks: prevalence and methods. J. Med. Entomol. 46:557565.Google Scholar
Wolfe, B. E., Rodgers, V. L., Stinson, K. A., and Pringle, A. 2008. The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J. Ecol. 96:777783.Google Scholar
Zimmerman, G. 1986. The “Galleria bait method” for detection of entomopathogenic fungi in soil. J. Appl. Entomol. 102:212215.Google Scholar