Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T04:09:13.808Z Has data issue: false hasContentIssue false

The effects of fatty acids on pure cultures of rumen bacteria

Published online by Cambridge University Press:  27 March 2009

C. Henderson
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen, AB2 9SB

Summary

The effects of fatty acids, at low concentrations (0–005-O5 g/1), on the growth of seven species of rumen bacteria were examined. Anaerovibrio lipolytica(strain 5 S), Peptostreptococcus elsdenii(type 2), Bacteroides ruminicola46/52 and Selenomonas ruminantium(strain 17) were unaffected by addition of oleic acid to the medium. Growth of ButyrivibrioB 835 was stimulated by low concentrations of oleic (< 0–01 g/1), lauric (< 0–1 g/1) or capric (< 0–1 g/1) acids while higher concentrations of these acids were inhibitory. Myristic, palmitic and stearic acids were inhibitory at all concentrations tested. Ruminococcus4263/1 was inhibited at all concentrations of the six acids. Production of methane by pure cultures of Methanobacterium ruminantiumwas also inhibited by the additions of long-chain fatty acids. Oleic acid was the most inhibitory of the series of acids. These results are consistent with the reported effects of lipids on rumen function.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackburn, T. H. & Hungate, K. E. (1963). Suceinic acid turnover and propionate production in the bovine rumen. Appl. Microbiol. 11, 132–35.CrossRefGoogle ScholarPubMed
Brooks, C. C., Garner, G. B., Gehrke, C. W., Muhrer, M. E. & Pfandeb, W. H. (1954). The effect of added fat on the digestion of cellulose and protein by ovine rumen microorganisms. J. Anim. Sci. 13, 758–64.CrossRefGoogle Scholar
Camien, M. N. & Dunn, M. S. (1957). Saturated fatty acids as bacterial antimetabolites. Archs Biochem. Biophys. 70, 327–45.CrossRefGoogle ScholarPubMed
Clark, B. & Porteous, J. W. (1964). Determination of suceinic acid by an enzymic method. Biochem. J. 93, 21–2C.CrossRefGoogle ScholarPubMed
Czerkawski, J. W., Blaxter, K. L. & Wainman, F. W. (1966 a). The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. Br. J. Nutr. 20, 349–62.CrossRefGoogle Scholar
Czerkawski, J. W., Blaxtee, K. L. & Wainman, F. W. (1966 b). The effect of linseed oil and of linseed oil fatty acids incorporated in the diet on the metabolism of the sheep. Br. J. Nutr. 20, 485–94.Google Scholar
Czerkawski, J. W., Blaxter, K. L. & Wainman, F. W. (1966 c). The effect of functional groups other than carboxyl on the metabolism of C1S and C12 alkyl compounds by sheep. Br. J. Nutr. 20, 495508.CrossRefGoogle Scholar
Czerkawski, J. W. (1966). The effect on digestion in the rumen of a gradual increase in the content of fatty acids in the diet of sheep. Br. J. Nutr. 20, 833–42.CrossRefGoogle ScholarPubMed
Dehority, B. A., Scott, H. W. & Kowaluk, P. (1967). Volatile fatty acid requirements of cellulolytio rumen bacteria. J. Bad. 94, 537–43.Google ScholarPubMed
Demeyer, D. I. & Henderickx, H. K. (1967). The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. THochim. biophys. Acta 137, 484–97.CrossRefGoogle ScholarPubMed
Demeyer, D. I., Van Nevel, C., Henderickx, H. K. & Martin, J. (1969). The effect of unsaturated fatty acids upon methane and propionic acid in the rumen. Energy Metabolism of Farm Animals (ed. Blaxter, K. L., Kielanowski, J. and Thorbek, G.), pp. 139–47. (Proc. 4th Symp. Energy Metab., Warsaw; E. A. A. P. Publ. no. 12.) Newcastle upon Tyne: Oriel Press.Google Scholar
Fell, B. F., Kay, M., Whitelaw, F. G. & Boyne, R. (1968). Observations on the development of ruminal lesions in calves fed on barley. Res. Vet. Sci. 9, 458–66.CrossRefGoogle ScholarPubMed
Galbraith, H., Miller, T. B., Paton, A. M. & Thompson, J. K. (1971). Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J. appl. Bact. 34, 803–13.CrossRefGoogle ScholarPubMed
Henderson, C. (1971). A study ofthelipase of Anaeroui brio lipolytica: a rumen bacterium. J. gen. Microbiol. 65, 81–9.CrossRefGoogle Scholar
Hobson, P. N. (1965). Continuousv culture of some anaerobic and facultatively anaerobic rumen bacteria. J. gen. Microbiol. 38, 167–80.Google Scholar
Hobson, P. N. & Mann, S. O. (1961). The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. J. gen. Microbiol. 25, 227–40.CrossRefGoogle ScholarPubMed
Hobson, P. N., Mann, S. O. & Oxford, A. E. (1958). Some studies on the occurrence and properties of a large Gram-negative coccus from the rumen. J. gen. Microbiol. 19, 462–72.CrossRefGoogle ScholarPubMed
Hungate, K. E. (1950). The anaerobic mesophilic cellulolytic bacteria. Bad. Rev. 14, 149.Google ScholarPubMed
Hungate, R. E. (1966). The Rumen and Its Microbes, p. 76. London: Academic Press.Google Scholar
Kodicek, E. & Worden, A. N. (1945). The effect of unsaturated fatty acids on Lactobacillus helveticus and other Gram-positive micro-organisms. Biochem. J. 39, 7885.CrossRefGoogle ScholarPubMed
Kurihara, Y., Eadie, J. M., Hobson, P. N. & Mann, S. O. (1968). Relationship between bacteria and ciliate protozoa in the sheep rumen. J. gen. Microbiol. 51, 267–88.Google Scholar
Lysons, R. J., Alexander, T., Hobson, P. N., Mann, S. O. & Stewart, C. S. (1971). Establishment of a limited rumen microflora in gnotobiotic lambs. Res. Vet. Sci. 12, 486–7.CrossRefGoogle ScholarPubMed
Mann, S. O. (1968). An improved method of determining cellulolytic activity in anaerobic bacteria. J. appl. Bad. 31, 241–4.Google Scholar
Nieman, C. (1954). Influence of trace amounts of fatty acids on the growth of micro-organisms. Bad. Rev. 18, 147–63.Google Scholar
Packett, L. V. & McCunb, R. W. (1965). Determination of steam-volatile organic acids in fermentation media by gas-liquid chromatography. Appl. Microbiol. 13, 22–7.CrossRefGoogle ScholarPubMed
Paynter, M. J. B. & Hungate, R. E. (1968). Characterization of Methanobacterium mobilis sp. n. Isolated from the bovine rumen. J. Bad. 95, 1943–51.Google Scholar
Prins, R. A., Van Nevel, C. J. & Demeyer, D. I. (1972). Pure culture studies of inhibitors for methanogenic bacteria. Antonie van Leeuwenhoek. J. Microbiol. 38, 281–7.Google ScholarPubMed
Shaw, J. C. & Ensor, W. L. (1959). Effect of feeding cod liver oil and unsaturated fatty acids on rumen volatile fatty acids and milk fat content. J. Dairy Sci. 42, 1238–40.CrossRefGoogle Scholar
Sheu, C. W. & Freese, E. (1972). Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J. Bad. 111, 516–24.Google ScholarPubMed
Smith, P. H. & Hungate, R. E. (1958). Isolation and characterisation of Methanobacterium ruminantium n. sp. J. Bad. 75, 713–18.Google ScholarPubMed
White, T. W., Grainger, R. B., Baker, F. H. & Stroud, J. W. (1958). Effect of supplemental fat on digestion and the ruminal calcium requirement of sheep. J. Anim. Sci. 17, 797803.CrossRefGoogle Scholar