Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T14:38:44.722Z Has data issue: false hasContentIssue false

Enhancing selenium concentration in lentil (Lens culinaris subsp. culinaris) through foliar application

Published online by Cambridge University Press:  27 June 2014

M. M. RAHMAN
Affiliation:
School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia Centre for Legumes in Mediterranean Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
W. ERSKINE*
Affiliation:
Centre for Legumes in Mediterranean Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
M. A. MATERNE
Affiliation:
Department of Primary Industries, 110 Natimuk Road, Horsham, Victoria 3400, Australia
L. M. MCMURRAY
Affiliation:
South Australian Research and Development Institute, Clare, South Australia 5453, Australia
P. THAVARAJAH
Affiliation:
Pulse Quality and Nutrition, North Dakota State University, 208 Harris Hall, Fargo, ND 58105, USA
D. THAVARAJAH
Affiliation:
Pulse Quality and Nutrition, North Dakota State University, 208 Harris Hall, Fargo, ND 58105, USA
K. H. M. SIDDIQUE
Affiliation:
The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
*
*To whom all correspondence should be addressed. Email: william.erskine@uwa.edu.au

Summary

Selenium (Se) is an essential micronutrient for human and animal health. Globally, more than one billion people are Se deficient due to low dietary Se. Low dietary intake of Se can be improved by Se supplementation, food fortification and biofortification of crops. Lentil (Lens culinaris Medikus subsp. culinaris) is a popular cool-season food legume in many parts of the world; it is naturally rich in Se and therefore has potential for Se biofortification. An Se foliar application experiment at two locations and a multi-location trial of 12 genotypes at seven locations were conducted from April to December 2011 in South Australia and Victoria, Australia. Foliar application of a total of 40 g/ha of Se as potassium selenate (K2SeO4) – 10 g/ha during full bloom and 30 g/ha during the flat pod stage – increased seed Se concentration from 201 to 2772 μg/kg, but had no effect on seed size or seed yield. Consumption of 20 g of biofortified lentil can supply all of the recommended daily allowance of Se. After Se foliar application, cultivars PBA Herald XT (3327 μg/kg), PBA bolt (3212) and PBA Ace (2957 μg/kg) had high seed Se concentrations. These cultivars may be used in lentil biofortification. In the genotypic evaluation trial, significant genotype and location variation was observed for seed Se concentration, but the interaction was not significant. In conclusion, foliar application of Se as K2SeO4 is an efficient agronomic approach to improve seed Se concentration for lentil consumers and there is also scope for genetic biofortification in lentil.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akibode, C. S. & Maredia, M. K. (2012). Global and Regional Trends in Production, Trade and Consumption of Food Legume Crops. Michigan, USA: Department of Agricultural, Food, and Resource Economics, Michigan State University. Available from: http://EconPapers.repec.org/RePEc:ags:midasp:136293 (accessed 12 July 2013).Google Scholar
Arthur, J. R. & Beckett, G. J. (1994). New metabolic roles for selenium. Proceedings of the Nutrition Society 53, 615624.Google Scholar
Arvy, M. P. (1993). Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). Journal of Experimental Botany 44, 10831087.CrossRefGoogle Scholar
Beck, M. A., Shi, Q., Morris, V. C. & Levander, O. A. (1995). Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nature Medicine 1, 433436.CrossRefGoogle ScholarPubMed
Behne, D., Kyriakopoulos, A., Kalcklösch, M., Weiss-Nowak, C., Pfeifer, H., Gessner, H. & Hammel, C. (1997). Two new selenoproteins found in the prostatic glandular epithelium and the spermatid nuclei. Biomedical and Environmental Sciences 10, 340345.Google Scholar
Bhatty, R. S. (1988). Composition and quality of lentil (Lens culinaris Medik): a review. Canadian Institute of Food Science and Technology Journal 21, 144160.Google Scholar
Broadley, M. R., Alcock, J., Alford, J., Cartwright, P., Foot, I., Fairweather-Tait, S. J., Hart, D. J., Hurst, R., Knott, P., McGrath, S. P., Meacham, M. C., Norman, K., Mowat, H., Scott, P., Stroud, J. L., Tovey, M., Tucker, M., White, P. J., Young, S. D. & Zhao, F.-J. (2010). Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant and Soil 332, 518.Google Scholar
Cary, E. E. & Allaway, W. H. (1969). The stability of different forms of selenium applied to low-selenium soils. Soil Science Society of America Journal 33, 571574.Google Scholar
Cary, E. E. & Rutzke, M. (1981). Foliar application of selenium to field corn. Agronomy Journal 73, 10831085.Google Scholar
Chen, Y. W., Truong, H. Y. T. & Belzile, N. (2009). Abiotic formation of elemental selenium and role of iron oxide surfaces. Chemosphere 74, 10791084.Google Scholar
Clark, L. C., Combs, G. F., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., Davis, L. S., Glover, R. A., Graham, G. F., Gross, E. G., Krongrad, A., Lesher, J. L., Park, H. K., Sanders, B. B., Smith, C. L. & Taylor, J. R. (1996). Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. Journal of the American Medical Association 276, 19571963.Google Scholar
Combs, G. F. Jr (2001). Selenium in global food systems. British Journal of Nutrition 85, 517547.Google Scholar
Curtin, D., Hanson, R., Lindley, T. N. & Butler, R. C. (2006). Selenium concentration in wheat (Triticum aestivum) grain as influenced by method, rate, and timing of sodium selenate application. New Zealand Journal of Crop and Horticultural Science 34, 329339.Google Scholar
Djanaguiraman, M., Devi, D. D., Shanker, A. K., Sheeba, J. A. & Bangarusamy, U. (2005). Selenium – an antioxidative protectant in soybean during senescence. Plant and Soil 272, 7786.Google Scholar
Ducsay, L., Lozek, O., Varga, L. & Losak, T. (2007). Effect of winter wheat supplementation with selenium. Ecological Chemistry and Engineering 14, 289294.Google Scholar
Dworkin, B. M. (1994). Selenium deficiency in HIV infection and the acquired immunodeficiency syndrome (AIDS). Chemico-Biological Interactions 91, 181186.CrossRefGoogle ScholarPubMed
Erskine, W., Muehlbauer, F. J. & Short, R. W. (1990). Stages of development in lentil. Experimental Agriculture 26, 297302.CrossRefGoogle Scholar
FAO (2014). FAOSTAT Statistical Database of the United Nations Food and Agriculture Organization. Rome: FAO. Available from: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed 30 January 2014).Google Scholar
Fordyce, F. M. (2005). Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology: Impacts of the Natural Environment on Public Health (Ed. Selinus, O.), pp. 373415. London, UK: Elsevier.Google Scholar
Gissel-Nielsen, G. (1977). Control of Selenium in Plants. Roskilde, Denmark: Riso National Laboratory.Google Scholar
Gissel-Nielsen, G., Gupta, U. C., Lamand, M. & Westermarck, T. (1984). Selenium in soils and plants and its importance in livestock and human nutrition. Advances in Agronomy 37, 397460.CrossRefGoogle Scholar
Graham, R., Senadhira, D., Beebe, S., Iglesias, C. & Monasterio, I. (1999). Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Research 60, 5780.Google Scholar
Hanson, B., Lindblom, S. D., Loeffler, M. L. & Pilon-Smits, E. A. H. (2004). Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytologist 162, 655662.Google Scholar
Horton, S. (2006). The economics of food fortification. Journal of Nutrition 136, 10681071.Google Scholar
Hu, Q., Chen, L., Xu, J., Zhang, Y. & Pan, G. (2002). Determination of selenium concentration in rice and the effect of foliar application of Se-enriched fertiliser or sodium selenite on the selenium content of rice. Journal of the Science of Food and Agriculture 82, 869872.CrossRefGoogle Scholar
Johnson, C. R., Thavarajah, D., Combs, G. F. Jr & Thavarajah, P. (2013). Lentil (Lens culinaris L.): a prebiotic-rich whole food legume. Food Research International 51, 107113.Google Scholar
Johnson, H. W., Robinson, H. F. & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal 47, 314318.Google Scholar
Johnsson, L. (1991). Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant and Soil 133, 5764.CrossRefGoogle Scholar
Kumar, A. & Krishnaswamy, K. (1997). Selenium content of common Indian cereals, pulses and spices. Journal of Agricultural and Food Chemistry 45, 25652568.Google Scholar
Kuznetsov, V. V., Kholodova, V. P., Kuznetsov, V. V. & Yagodin, B. A. (2003). Selenium regulates the water status of plants exposed to drought. Doklady Biological Sciences 390, 266268.Google Scholar
Layrisse, M., Chaves, J. F., Mendez-Castellano, , Bosch, V., Tropper, E., Bastardo, B. & González, E. (1996). Early response to the effect of iron fortification in the Venezuelan population. American Journal of Clinical Nutrition 64, 903907.Google Scholar
Lyons, G. H., Stangoulis, J. & Robin, G. (2003). High-selenium wheat: biofortification for better health. Nutrition Research Reviews 16, 4560.Google Scholar
Lyons, G. H., Lewis, J., Lorimer, M. F., Holloway, R. E., Brace, D. M., Stangoulis, J. C. R. & Graham, R. D. (2004). High-selenium wheat: agronomic biofortification strategies to improve human nutrition. Food, Agriculture and Environment 2, 171178.Google Scholar
Lyons, G. H., Monasterio, I. O., Stangoulis, J. & Graham, R. (2005). Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant and Soil 269, 369380.Google Scholar
Lyons, G. H., Genc, Y., Soole, K., Stangoulis, J. C. R., Liu, F. & Graham, R. D. (2009). Selenium increases seed production in Brassica. Plant and Soil 318, 7380.Google Scholar
Miller, P. A., Williams, J. C., Robinson, H. F. & Comstock, R. E. (1958). Estimates of genotypic and environmental variances and covariances in upland cotton and their implications in selection. Agronomy Journal 50, 126131.Google Scholar
Monsen, E. R. (2000). Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. Journal of the American Dietetic Association 100, 637640.Google Scholar
Nestel, P., Bouis, H. E., Meenakshi, J. V. & Pfeiffer, W. (2006). Biofortification of staple food crops. Journal of Nutrition 136, 10641067.Google Scholar
Pulse Australia (2011). Australian Lentil Exports (Red & Green). Australia: Pulse Australia. Available from: http://www.cicilsiptic.org/downloads/0_71377800_1357723359AustralianLentilExports.pdf (accessed 1 July 2013).Google Scholar
Rahman, M. M., Erskine, W., Zaman, M. S., Thavarajah, P., Thavarajah, D. & Siddique, K. H. M. (2013). Selenium biofortification in lentil (Lens culinaris Medikus subsp. culinaris): farmers’ field survey and genotype ×environment effect. Food Research International 54, 15961604.CrossRefGoogle Scholar
Rayman, M. P. (2002). The argument for increasing selenium intake. Proceedings of the Nutrition Society 61, 203215.Google Scholar
Rayman, M. P. (2004). The use of high-selenium yeast to raise selenium status: how does it measure up? British Journal of Nutrition 92, 557574.Google Scholar
Reilly, C. (1996). Selenium in Food and Health, 2nd edn. New York: Springer.CrossRefGoogle Scholar
Schwarz, K. & Foltz, C. M. (1957). Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society 79, 32923293.Google Scholar
Sima, P. & Gissel-Nielsen, G. (1985). Spraying of crops with selenium. Acta Agriculturae Scandinavica 35, 161164.CrossRefGoogle Scholar
Singh, R. K. & Chaudhary, B. D. (1979). Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.Google Scholar
Smrkolj, P., Kreft, I. & Stibilj, V. (2005). Selenium uptake and species distribution in peas after foliar treatment with selenate. In Proceedings: Twenty Years of Selenium Fertilization (Ed. Eurola, M.), p. 84. Agrifood Research Reports no. 69. Helsinki, Finland: MTT Agrifood Research Finland.Google Scholar
Smrkolj, P., Osvald, M., Osvald, J. & Stibilj, V. (2007). Selenium uptake and species distribution in selenium-enriched bean (Phaseolus vulgaris L.) seeds obtained by two different cultivations. European Food Research and Technology 225, 233237.Google Scholar
Spallholz, J. E., Boylan, L. M. & Larsen, H. S. (1990). Advances in understanding selenium's role in the immune system. Annals of the New York Academy of Sciences 587, 123139.Google Scholar
Spallholz, J. E., Boylan, L. M. & Rhaman, M. M. (2004). Environmental hypothesis: is poor dietary selenium intake an underlying factor for arsenicosis and cancer in Bangladesh and West Bengal, India? Science of the Total Environment 323, 2132.CrossRefGoogle ScholarPubMed
Spallholz, J. E., Boylan, L. M., Robertson, J. D., Smith, L., Rahman, M. M., Hook, J. & Rigdon, R. (2008). Selenium and arsenic content of agricultural soils from Bangladesh and Nepal. Toxicological and Environmental Chemistry 90, 203210.Google Scholar
Swaine, D. J. (1955). Selenium. In The Trace Element Content of Soils (Ed. Swaine, D. J.), pp. 9199. Harpenden, UK: Commonwealth Agricultural Bureaux.Google Scholar
Thavarajah, D., Vandenberg, A., George, G. N. & Pickering, I. J. (2007). Chemical form of selenium in naturally selenium-rich lentils (Lens culinaris L.) from Saskatchewan. Journal of Agricultural and Food Chemistry 55, 73377341.Google Scholar
Thavarajah, D., Ruszkowski, J. & Vandenberg, A. (2008). High potential for selenium biofortification of lentils (Lens culinaris L.). Journal of Agricultural and Food Chemistry 56, 1074710753.Google Scholar
Thavarajah, D., Thavarajah, P., Sarker, A., Materne, M., Vandemark, G., Shrestha, R., Idrissi, O., Hacikamiloglu, O., Bucak, B. & Vandenberg, A. (2011 a). A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): implications for nutritional fortification strategies. Food Chemistry 125, 7276.Google Scholar
Thavarajah, D., Thavarajah, P., Wejesuriya, A., Rutzke, M., Glahn, R., Combs, G. F. Jr & Vandenberg, A. (2011 b). The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3 year study. Euphytica 180, 123128.Google Scholar
Tveitnes, S., Singh, B. R. & Ruud, L. (1995). Selenium concentration in spring wheat as influenced by basal application and top dressing of selenium-enriched fertilizers. Fertilizer Research 45, 163167.CrossRefGoogle Scholar
Wagabaza, O. (2013). Sweet potatoes, beans perform miracles for Buyende children. New Vision, 2 October 2013. Available from: http://www.newvision.co.ug/news/647891-sweet-potatoes-beans-perform-miracles-for-buyende-children.html (accessed 3 February 2014).Google Scholar
Wei, A. (1996). Soybean sprout. Zhengzhou Liangshi Xueyuan Xuebao 17, 6770.Google Scholar
Yang, F., Chen, L., Hu, Q. & Pan, G. (2003). Effect of the application of selenium on selenium content of soybean and its products. Biological Trace Element Research 93, 249256.Google Scholar
Yu, S. Y., Zhu, Y. J. & Li, W. G. (1997). Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong. Biological Trace Element Research 56, 117124.Google Scholar
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.Google Scholar
Zahedi, H., Noormohammadi, G., Rad, A. H. S., Habibi, D. & Boojar, M. M. A. (2009). The effects of zeolite and foliar applications of selenium on growth, yield and yield components of three canola cultivars under drought stress. World Applied Sciences Journal 7, 255262.Google Scholar