Article contents
In situ techniques to predict in vivo digestibility and to evaluate the impact of flint maize processing methods on degradation parameters
Published online by Cambridge University Press: 08 February 2021
Abstract
This study aimed to (1) evaluate the effects of flint maize processing methods on the estimation of the readily soluble fraction (a), the potentially degradable fraction (b) and the rate of degradation of b (c) for dry matter (DM), organic matter (OM) and starch in the rumen; and (2) verify whether two different applications of in situ technique can be used to estimate in vivo DM, OM and starch digestibilities. Five ruminally cannulated Nellore bulls (265 ± 18.2 kg; 8 ± 1.0 mo) were distributed in a 5 × 5 Latin square. Three experimental diets were composed of 0.30 whole-plant maize silage, 0.10 supplement and 0.60 of one of the following processing methods: dry ground maize grain (DMG); high-moisture maize (HMM); reconstituted maize grain silage (RMG). Two additional diets were composed of 0.10 supplement, 0.80 snaplage and 0.10 stalklage (SNAP-80); or 0.10 supplement and 0.90 snaplage (SNAP-90). Digestibilities were estimated using in vivo procedure or predicted from in situ technique using a single 24 h incubation point or an equation proposed in previous literature. Diets based on ensiled grains presented greater (P < 0.05) fraction a and c and lower (P < 0.05) fraction b of DM, OM and starch compared to DMG. Both alternative use of in situ technique accurately estimated (P > 0.05) in vivo DM, OM and starch digestibilities. The results suggest that ensilage process may increase the availability of nutrients. The two different applications of in situ technique showed precision and accuracy to estimate in vivo digestibility.
- Type
- Animal Research Paper
- Information
- Copyright
- Copyright © The Author(s), 2021. Published by Cambridge University Press
References
- 4
- Cited by