Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T05:27:17.610Z Has data issue: false hasContentIssue false

Life-cycle assessment of biogas production under the environmental conditions of northern Germany: greenhouse gas balance

Published online by Cambridge University Press:  11 October 2013

S. CLAUS*
Affiliation:
Institute of Crop Science & Plant Breeding, Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
F. TAUBE
Affiliation:
Institute of Crop Science & Plant Breeding, Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
B. WIENFORTH
Affiliation:
Institute of Crop Science & Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
N. SVOBODA
Affiliation:
Leibnitz Centre for Agricultural Landscape Research, Eberswalder Strasse 84, D-15374 Müncheberg, Germany
K. SIELING
Affiliation:
Institute of Crop Science & Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
H. KAGE
Affiliation:
Institute of Crop Science & Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
M. SENBAYRAM
Affiliation:
Institute of Applied Plant Nutrition, Germany Georg-August-Ernst University of Göttingen, Carl-Sprengel-Weg 1, D-37075 Göttingen, Germany
K. DITTERT
Affiliation:
Institute of Applied Plant Nutrition, Germany Georg-August-Ernst University of Göttingen, Carl-Sprengel-Weg 1, D-37075 Göttingen, Germany
D. GERICKE
Affiliation:
Institute of Crop Science & Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
A. PACHOLSKI
Affiliation:
Institute of Crop Science & Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
A. HERRMANN
Affiliation:
Institute of Crop Science & Plant Breeding, Grass and Forage Science/Organic Agriculture, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, D-24118 Kiel, Germany
*
*To whom all correspondence should be addressed. Email: sclaus@gfo.uni-kiel.de

Summary

A considerable expansion of biogas production in Germany, paralleled by a strong increase in maize acreage, has caused growing concern that greenhouse gas (GHG) emissions during crop substrate production might counteract the GHG emission saving potential. Based on a 2-year field trial, a GHG balance was conducted to evaluate the mitigation potential of regionally adapted cropping systems (continuous maize, maize-wheat-Italian ryegrass, perennial ryegrass ley), depending on nitrogen (N) level and N type. Considering the whole production chain, all cropping systems investigated contributed to the mitigation of GHG emissions (6·7–13·3 t CO2 eq/ha), with continuous maize revealing a carbon dioxide (CO2) saving potential of 55–61% compared with a fossil energy mix reference system. The current sustainability thresholds in terms of CO2 savings set by the EU Renewable Energy Directive could be met by all cropping systems (48–76%). Emissions from crop production had the largest impact on the mitigation effect (⩾50%) unless the biogas residue storage was not covered. The comparison of N fertilizer types showed less pronounced differences in GHG mitigation potential, whereas considerable site effects were observed.

Type
Nitrogen Workshop Special Issue Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, P. R., Del Grosso, S. J. & Parton, W. J. (2007). Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Applications 17, 675691.Google Scholar
Bachmaier, J., Effenberger, M. & Gronauer, A. (2010). Greenhouse gas balance and resource demand of biogas plants in agriculture. Engineering In Life Sciences 10, 560569.CrossRefGoogle Scholar
Bleken, M. A., Herrmann, A., Haugen, L. E., Taube, F. & Bakken, L. (2009). SPN: a model for the study of soil–plant nitrogen fluxes in silage maize cultivation. European Journal of Agronomy 30, 283295.Google Scholar
Bockisch, F. J. (2000). Bewertung von Verfahren der ökologischen und konventionellen landwirtschaftlichen Produktion im Hinblick auf den Energieeinsatz und bestimmte Schadgasemissionen: Studie als Sondergutachten im Auftrag des Bundesministeriums für Ernährung, Landwirtschaft und Forsten, Bonn. Landbauforschung Völkenrode, Sonderheft 211, S. 1-206. Braunschweig, Germany: Bundesforschungsanstalt für Landwirtschaft.Google Scholar
Börjesson, P. & Berglund, M. (2006). Environmental systems analysis of biogas systems – Part I: fuel-cycle emissions. Biomass and Bioenergy 30, 469485.Google Scholar
Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B. & Woess-Gallasch, S. (2009). Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resources, Conservation and Recycling 53, 434447.CrossRefGoogle Scholar
Dittert, K., Senbayram, M., Wienforth, B., Kage, H. & Muehling, K. H. (2009). Greenhouse Gas Emissions in Biogas Production Systems. The Proceedings of the International Plant Nutrition Colloquium XVI. Davis, CA, USA: UC Davis.Google Scholar
Dobbie, K. E. & Smith, K. A. (2001). The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. European Journal of Soil Science 52, 667673.Google Scholar
Edelmann, W., Baier, U. & Engeli, H. (2005). Environmental aspects of the anaerobic digestion of the organic fraction of municipal solid wastes and of solid agricultural wastes. Water Science and Technology 52, 203208.CrossRefGoogle ScholarPubMed
Eder, B., Papst, C., Darnhofer, B., Eder, J., Schmid, H. & Hülsbergen, K. J. (2009). Energie- und CO2-Bilanz für Silomais zur Biogaserzeugung vom Anbau bis zur Stromeinspeisung. In Internationale Wissenschaftstagung Biogas Science 2009 – Band 3 (Eds Bayerische Landesanstalt für Landwirtschaft), pp. 717719. Freising, Germany: Landesanstalt für Landwirtschaft.Google Scholar
EEG (2012). Gesetz fur den Vorrang Erneuerbarer Energien. Konsolidierte Fassung des Gesetzestextes in der ab 1. Januar 2012 geltenden Fassung, 2012. Berlin: EEG.Google Scholar
European Parliament (2009). Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union L140, 1662.Google Scholar
Fachagentur Nachwachsende Rohstoffe e.V. (FNR) (2010). Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich. Johann Heinrich von Thünen-Institut (vTI). Gülzow, Germany: Media Cologne Kommunikationsmedien GmbH.Google Scholar
Fachverband Biogas e.V. (2013). Branchenzahlen 2012 und Branchenentwicklung 2012/2013. Freising, Germany: Fachverband Biogas e.V. Available from: http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen (verified 7 August 2013).Google Scholar
Felten, D., Fröba, N., Fries, J. & Emmerling, C. (2013). Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany. Renewable Energy 55, 160174.Google Scholar
Gaillard, G., Hausheer, J. & Crettaz, P. (1997). Umweltinventar der landwirtschaftlichen Inputs im Pflanzenbau. Daten für die Erstellung von Energie- und Ökobilanz der Landwirtschaft. FAT-Schriftenreihe 46. Tänikon Ettenhausen, Switzerland: FAT.Google Scholar
Gericke, D. (2009). Measurement and modelling of ammonia emissions after field application of biogas slurries. Ph.D. Thesis, Kiel University, Germany.Google Scholar
Gerin, P. A., Vliegen, F. & Jossart, J. -M. (2008). Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology 99, 26202627.Google Scholar
Hülsbergen, K. -J., Feil, B., Biermann, S., Rathke, G. -W., Kalk, W. -D. & Diepenbrock, W. (2001). A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agriculture, Ecosystems and Environment 86, 303321.Google Scholar
Intergovernmental Panel on Climate Change (IPCC) (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Agriculture, Forestry and Other Land Use (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.). Hayama, Japan: IGES.Google Scholar
Jury, C., Benetto, E., Koster, D., Schmitt, B. & Welfring, J. (2010). Life Cycle Assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass and Bioenergy 34, 5466.Google Scholar
Kaltschmitt, M. & Reinhardt, G. (1997). Nachwachsende Energieträger: Grundlagen, Verfahren, ökologische Bilanzierung. Braunschweig/Wiesbaden, Germany: Friedr. Vieweg & Sohn Verlagsgesellschaft.Google Scholar
Klemedtsson, L., Von Arnold, K., Weslien, P. & Gundersen, P. (2005). Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology 11, 11421147.CrossRefGoogle Scholar
Kuratorium für Technik und Buwesen in der Landwirtschaft (KTBL) (2011). KTBL-Datenbank Kalkulationsdaten: Pflanzenproduktion. Darmstadt, Germany: KTBL. Available from: http://www.ktbl.de/index.php?id=813 (verified 8 August 2013).Google Scholar
Meyer-Aurich, A., Schattauer, A., Hellebrand, H. J., Klauss, H., Plöchl, M. & Berg, W. (2012). Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renewable Energy 37, 277284.CrossRefGoogle Scholar
Öko Institut (2008). Globales Emissions-Modell integrierter Systeme (GEMIS), Version 4.5. Darmstadt, Germany: IINAS. Available from: http://www.iinas.org/gemis-de.html (verified 8 August 2013).Google Scholar
Patyk, A. & Reinhardt, G. A. (1997). Düngemittel-, Energie und Stoffstrombilanzen. Braunschweig/Wiesbaden, Germany: Viehweg-Verlag.Google Scholar
Plöchl, M., Heiermann, M., Linke, B. & Schelle, H. (2009). Biogas crops – Part II: ecological benefit of using field crops for anaerobic digestion. Agricultural Engineering International: the CIGR Ejournal XI, Manuscript number 1086.Google Scholar
Poeschl, M., Ward, S. & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy 87, 33053321.CrossRefGoogle Scholar
Reinhardt, G. A. (1993). Energie- und CO2-Bilanzierung nachwachsender Rohstoffe. Theoretische Grundlagen und Fallstudie Raps. Wiesbaden, Germany: Verlag Vieweg.Google Scholar
Scholwin, F., Michel, J., Schröder, G. & Kalies, M. (2006). Ökologische Analyse einer Biogasnutzung aus nachwachsenden Rohstoffen. Leipzig, Germany: Institut für Energetik und Umwelt gemeinnützige GmbH.Google Scholar
Scholz, V. (1995). Energiebilanz für Festbrennstoffe. Forschungsbericht 95/3. Landtechnik 2/96, 8283.Google Scholar
Senbayram, M. (2009). Greenhouse gas emission from soils of bioenergy crop production systems and regulating factors: the biogas expert project. Ph.D. Thesis, Kiel University, Germany.Google Scholar
Sieling, K., Herrmann, A., Wienforth, B., Taube, F., Ohl, S., Hartung, E. & Kage, H. (2013). Biogas cropping systems: short term response of yield performance and N use efficiency to biogas residue application. European Journal of Agronomy 47, 4454.CrossRefGoogle Scholar
Šimek, M. & Cooper, J. E. (2002). The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science 53, 345354.Google Scholar
Simon, K-H. (1998). Hinweise zu den in den Beispielszenarien der Studie- Klimarelevanz von Landwirtschaft und Ernährung- verwendeten Kenngrößen. Kassel, Germany: Wissenschaftliches Zentrum für Umweltsystemforschung.Google Scholar
Sponagel, H., Grottenthaler, W., Hartmann, K. -J., Hartwich, R., Janetzko, P., Joisten, H., Kühn, D., Sabel, K. -J. & Traidl, R. (2005). Bodenkundliche Kartieranleitung. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Svoboda, N. (2011). Auswirkung der Gärrestapplikation auf das Stickstoffauswaschungs-potential von Anbausystemen zur Substratproduktion. Ph.D. Thesis, Kiel University, Germany.Google Scholar
Svoboda, N., Taube, F., Kluß, C., Wienforth, B., Kage, H., Ohl, S., Hartung, E. & Herrmann, A. (2013). Crop production for biogas and water protection – a trade-off? Agriculture, Ecosystems and Environment 177, 3647.Google Scholar
Vetter, A., Heiermann, M. & Toews, T. (2009). Anbausysteme für Energiepflanzen: Optimierte Fruchtfolgen und effiziente Lösungen. Frankfurt: DLGVerlags-GmbH.Google Scholar
Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) (2004). Standpunkt Humusbilanzierung. Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Bonn, Germany: VDLUFA-Verlag GmbH.Google Scholar