Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T07:51:48.405Z Has data issue: false hasContentIssue false

The Microbiology of Farmyard Manure Decomposition in Soil II. Decomposition of Cellulose

Published online by Cambridge University Press:  27 March 2009

H. L. Jensen
Affiliation:
(Department of Bacteriology, Rothamsted Experimental Station, Harpenden.)

Extract

1. Addition of farmyard manure to soil gives rise, in laboratory experiments, to an abundant development of cellulose-decomposing bacteria of the genus Vibrio in approximately neutral soils (pH 6.5–7.0). In faintly acid soils (pH 5.7–6.2) these organisms develop less abundantly, and are partly replaced by Spirochaeta cytophaga. At lower pH values only the fungi are active in the decomposition of cellulose. Similar results were obtained by adding filter-paper or straw to soils of different reactions. Of the fungi, Trichoderma and Penicillium appear more active in acid soil, whereas other forms, among others Mycogone nigra, Stachybotrys sp., Coccospora agricola (?), and Botryosporium sp. seemed prominent in neutral soil.

2. The vibrios, of which four strains were studied in pure culture, are very sensitive to acidity. They fail to develop in the pH interval 6.0–6.4, and have an optimum at p 7.1–7.6. Spirochaeta cytophaga appears to be slightly more resistant to acidity, being able to grow at pH 5.6–6.0.

3. The bacteria as well as the fungi are capable of decomposing the lignified cellulose of straw.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1931

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1)Barthel, C. and Bengtsson, N. Meddelande No. 300fr. Centralanst.f. Försöksv. på Jordbruksomr. (1926). Stockholm.Google Scholar
(2)Charpentier, C. A. G. (1921). Studien über den Einfluss des Rindvieh- und Pferdestallmistes auf die Zersetzung der Zellulose in der Ackererde (1921). Thesis, Helsingfors.Google Scholar
(3)Daszewska, W.Bull. Inst. Bot. Univ. de Genève (1913), 8, 328–16.Google Scholar
(4)Dubos, B. J.Ecology (1928), 9, 1227.CrossRefGoogle Scholar
(5)Dubos, B. J.J. Bact. (1928), 15, 223–34.CrossRefGoogle Scholar
(6)Du Toit, M. S. Thesis (1924), University of Cambridge.Google Scholar
(7)Goddard, N.Bot. Gaz. (1913), 56, 249304.CrossRefGoogle Scholar
(8)Gray, P. H. H. and Chalmers, C. H.Ann. Appl. Biol. (1924), 11, 324–38.CrossRefGoogle Scholar
(9)Heukelekian, H. and Waksman, S. A.J.Biol. Chem. (1926), 66, 323–42.CrossRefGoogle Scholar
(10)Hutchinson, H. B. and Clayton, J.J. Agric. Sci. (1915), 9, 143–72.CrossRefGoogle Scholar
(11)Iterson, G. v.Centr. Bakt. (1904), II, 11, 689–98.Google Scholar
(12)Jensen, H. L.J. Agric. Sci. (1931), 21, 3880.CrossRefGoogle Scholar
(13)Kalninš, A.Latvijas Univ. Raksti, Lauksaimniecibas Fakultātes Serija I (1930), 11, 221.Google Scholar
(14)Khouvine, Y.Ann. Inst. Past. (1923), 37, 711–52.Google Scholar
(15)Krainsky, A.Centr. Bakt. (1914), II, 41, 649–88.Google Scholar
(16)Kroulik, A.Centr. Bakt. (1912), II, 36, 339–46.Google Scholar
(17)Malenkovic, . Centr. Bakt. (1906), II, 16, 405–16.Google Scholar
(18)Mcbeth, I. G. and Scales, F. M.U.S. Dept. of Agric. Bur. of Plant Indr. (1915), Bull. 266.Google Scholar
(19)Omeliansky, W.Centr. Bakt. (1902), II, 8, 193301, 225–31, 257–63, 289–94, 321–6, 353–61, 385–91.Google Scholar
(20)Otto, R.Beitr. Allg. Bot. (1916), 1, 190260.Google Scholar
(21)Pringsheim, H.Centr. Bakt. (1913), II, 38, 513–16.Google Scholar
(22)Rege, R. D.Ann. Appl. Biol. (1927), 14, 143.CrossRefGoogle Scholar
(23)Scales, F. M.Centr. Bakt. (1915), II, 44, 661–3.Google Scholar
(24)Thaysen, A. C. and Bunker, H. J. The Microbiology of Cellulose, Hemicelluloses, Pectins and Gums (1927). OxfordGoogle Scholar
(25)Traaen, A. E.Nyt Mag.f. Naturv. (1914), 52, 20121.Google Scholar
(26)Tubeuf, C. v.Centr. Bakt. (1902), II, 9, 127–35.Google Scholar
(27)Waksman, S. A.Cellulosechemie (1927), 8, Nos. 910.Google Scholar
(28)Waksman, S. A. and Heukelekian, H.Actes de la I Vième Congr. Int. d. Pèdol. Rome 1924 (1926), 3, 216–28.Google Scholar
(29)Waksman, S. A. and Skinner, C. E.J. Bact. (1926), 12, 5784.CrossRefGoogle Scholar
(30)Waksman, S. A. and Tenney, F. G.Soil Sci. (1927), 24, 275–84.CrossRefGoogle Scholar
(31)Wehmer, C.Brennstoffchemie (1925), 6, 101.Google Scholar
(32)Winogradsky, S.C.R. Acad. Sci. Paris (1928), 187, 326–9.Google Scholar