Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T08:43:20.234Z Has data issue: false hasContentIssue false

Nitrogen transformations during the biological decomposition of straw composted with inorganic nitrogen

Published online by Cambridge University Press:  27 March 2009

J. M. Bremner
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts

Extract

1. Nitrogen transformations during the decomposition of straw composted with ammonium carbonate have been studied by following the changes in (a) the amounts of inorganic and organic nitrogen; (b) the amounts of ammonia-, volatile base-, α-amino- and amino sugar-N liberated by acid hydrolysis of the organic nitrogen complexes; and (c) the amino acid composition of acid hydrolysates of the composts.

2. Synthesis of organic nitrogen during the biological decomposition of straw composted with ammonium carbonate is not accompanied by any gross change in the distribution of the forms of organic nitrogen. A large fraction of the organic nitrogen synthesized is in the form of protein; a smaller fraction is in the form of amino sugar.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aminoff, D. & Morgan, W. T. J. (1948). Nature, Lond., 162, 579.CrossRefGoogle Scholar
Aminoff, D. & Morgan, W. T. J. (1951). Biochem. J. 48, 74.CrossRefGoogle Scholar
Blix, G. (1948). Acta Chem. Scand. 2, 467.CrossRefGoogle Scholar
Bremner, J. M. (1949). J. Agric. Sci. 39, 183.CrossRefGoogle Scholar
Bremner, J. M. (1950). Biochem. J. 47, 538.CrossRefGoogle Scholar
Bremner, J. M. & Shaw, K. (1954). J. Agric. Sci. 44, 152.CrossRefGoogle Scholar
Charitschov, K. V. (1906). J. Soc. Phys.-Chim. Russe, 7, 1067.Google Scholar
Consden, R., Gordon, A. H. & Martin, A. J. P. (1947). Biochem. J. 41, 590.CrossRefGoogle Scholar
Conway, E. J. (1947). Microdiffusion Analysis and Volumetric Error, 2nd ed.London: Crosby Lockwood.Google Scholar
Crumpler, H. R. & Dent, C. E. (1949). Nature, Lond., 164, 441.CrossRefGoogle Scholar
Crumpler, H. R., Dent, C. E. & Lindan, O. (1950). Biochem. J. 47, 223.CrossRefGoogle Scholar
Dent, C. E. (1948). Biochem. J. 43, 169.CrossRefGoogle Scholar
Elson, L. A. & Morgan, W. T. J. (1933). Biochem. J. 27, 1824.CrossRefGoogle Scholar
Hutchinson, H. B. & Richards, E. H. (1921). J. Min. Agric. 28, 398.Google Scholar
Immers, J. & Vasseur, E. (1950). Nature, Lond., 165, 898.CrossRefGoogle Scholar
Lugg, J. W. H. (1946). Biochem. J. 40, 88.CrossRefGoogle Scholar
Mattingly, G. E. G. (1952). Nature, Lond., 169, 75.CrossRefGoogle Scholar
Mattingly, G. E. G. (1954). J. Sci. Food & Agric. 5, 353.CrossRefGoogle Scholar
Partridge, S. M. (1948). Biochem. J. 42, 238.CrossRefGoogle Scholar
Peech, M. & English, L. (1944). Soil Sci. 57, 167.CrossRefGoogle Scholar
Pucher, G. W., Vickery, H. B. & Leavenworth, C. S. (1935). Industr. Engng Chem. (Anal, ed.), 7, 152.Google Scholar
Richards, E. H. & Shrikhande, J. G. (1935). Soil Sci. 39, 1.CrossRefGoogle Scholar
Shore, A., Wilson, H. & Stueck, G. (1935). J. Biol. Chem. 112, 407.CrossRefGoogle Scholar
Smithies, W. R. (1952). Biochem. J. 51, 259.CrossRefGoogle Scholar
Tracey, M. V. (1952). Biochem. J. 52, 265.CrossRefGoogle Scholar
Van Slyke, D. D., Dillon, R. T., Macfadyen, D. A. & Hamilton, P. (1941). J. Biol. Chem. 141, 627.CrossRefGoogle Scholar
Waksman, S. A. & Gerretsen, F. C. (1931). Ecology, 12, 33.CrossRefGoogle Scholar
Waksman, S. A. & Stevens, K. R. (1930). Industr. Engng Chem. (Anal, ed.), 2, 167.Google Scholar