Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T15:48:40.347Z Has data issue: false hasContentIssue false

Nutritional manipulation of the fatty acid composition of sheep meat: a review

PAPER PRESENTED AT THE 9TH ANNUAL LANGFORD FOOD INDUSTRY CONFERENCE, BRISTOL, 24–25 MAY 2006

Published online by Cambridge University Press:  16 May 2007

L. A. SINCLAIR*
Affiliation:
Harper Adams University College, Edgmond, Newport, Shropshire TF10 8NB, UK

Summary

Sheep meat is characterized as being high in saturated fatty acids and low in polyunsaturated fatty acids (PUFA), attributes that are regarded as being disadvantageous within the human diet. Despite fresh forage being a particularly rich source of 18:3n−3 and vegetable oils being high in 18:2n−6 and 18:3n−3, the process of biohydrogenation in the rumen generally results in proportionally less than 0·1 of these essential dietary fatty acids (FA) reaching the small intestine. Increases in muscle content of 18:3n−3 of 1–2-fold have been achieved by supplementation with oil, or oilseeds, whilst increases of 1–3-fold have been obtained from grazing grass compared with concentrates, but in general the polyunsaturated to saturated FA ratio (P:S) in sheep meat has remained low at approximately 0·2–0·3. Substantial improvements in the P:S ratio of up to 0·57 and increases in muscle and adipose tissue levels of 18:3n−3 of up to 4 g/100 g FA can be obtained, but rely on protecting dietary PUFA from biohydrogenation. Additionally, increasing tissue supply of 18:3n−3 will result in only a small improvement in muscle concentration of the nutritionally beneficial 20:5n−3 and 22:6n−3, with meaningful increases relying on a dietary supply of these very-long-chain PUFA. An alternative strategy to improve the human health attributes of sheep meat is to decrease tissue levels of 18:0 by increasing the activity of stearoyl-CoA desaturase (SCD), although the response is often relatively small. Despite the apparent negative impact of ruminal metabolism on muscle FA content, the process of biohydrogenation is often incomplete and several of the intermediaries can have positive effects on human health. Within these intermediaries, future increases in tissue content of cis-9, trans-11 conjugated linoleic acid (CLA) may be obtained by increasing tissue supply directly, although a greater response may be obtained by maximizing tissue supply of trans-11 18:1 and elevating the action of SCD. Production of a FA profile in sheep meat that is higher in PUFA, particularly the advantageous very-long-chain PUFA, and with flavour and eating characteristics that meet specific market preferences, is a suitable area for research.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ådnøy, T., Haug, A., Sørheim, O., Thomassen, M. S., Varszegi, Z. & Eik, L. O. (2005). Grazing on mountain pastures – does it affect meat quality in lambs? Livestock Production Science 94, 2531.CrossRefGoogle Scholar
Ailhaud, G., Massiera, F., Weill, P., Legrand, P., Alessandri, J. M. & Guesnet, P. (2006). Temporal changes in dietary fats: role of n−6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Progress in Lipid Research 45, 203236.CrossRefGoogle ScholarPubMed
Ashes, J. R., Siebert, B. D., Gulati, S. K., Cuthbertson, A. Z. & Scott, T. W. (1992). Incorporation of n−3 fatty acids of fish oil into tissue and serum lipids of ruminants. Lipids 27, 629631.CrossRefGoogle ScholarPubMed
Aurousseau, B., Bauchart, D., Calichon, E., Micol, D. & Priolo, A. (2004). Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Science 66, 531541.CrossRefGoogle ScholarPubMed
Bas, P. & Morand-Fehr, P. (2000). Effect of nutritional factors on fatty acid composition of lamb fat deposits. Livestock Production Science 64, 6179.CrossRefGoogle Scholar
Bauman, D. E., Corl, B. A., Baumgard, L. H. & Griinari, J. M. (2001). Conjugated linoleic acid (CLA) and the dairy cow. In Recent Advances in Animal Nutrition (Eds Garnsworthy, P. C. & Wiseman, J.), pp. 221250. Nottingham, UK: Nottingham University Press.Google Scholar
Bessa, R. J. B., Santos-Silva, J., Ribeiro, J. M. R. & Portugal, A. V. (2000). Reticulo-rumen biohydrogenation and the enrichment of ruminant edible products with linoelic acid conjugated isomers. Livestock Production Science 63, 201211.CrossRefGoogle Scholar
Bessa, R. J. B., Portugal, P. V., Mendes, I. A. & Santos-Silva, J. (2005). Effect of lipid supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs fed dehydrated lucerne or concentrate. Livestock Production Science 96, 185194.CrossRefGoogle Scholar
Bolte, M. R., Hess, B. W., Means, W. J., Moss, G. E. & Rule, D. C. (2002). Feeding lambs high-oleate or high-linoleate safflower seeds differentially influences carcass fatty acid composition. Journal of Animal Science 80, 609616.CrossRefGoogle ScholarPubMed
Brenner, R. R. (1989). Factors influencing fatty acid chain elongation and desaturation. In The Role of Fats in Human Nutrition (Eds Vergroesen, A. J. & Crawford, M.), pp. 4579. London, UK: Academic Press.CrossRefGoogle Scholar
Burdge, G. C. & Calder, P. C. (2006). Dietary α-linolenic acid and health related outcomes: a metabolic perspective. Nutrition Research Reviews 19, 2652.CrossRefGoogle ScholarPubMed
Cabiddu, A., Decandia, M., Addis, M., Piredda, G., Pirisi, A. & Molle, G. (2005). Managing Mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Ruminant Research 59, 169180.CrossRefGoogle Scholar
Cabiddu, A., Addis, M., Pinna, G., Spada, S., Fiori, M., Sitzia, M., Pirisi, A., Piredda, G. & Molle, G. (2006). The inclusion of a daisy plant (Chrysanthemum coronarium) in dairy sheep diet. 1: Effect on milk and cheese fatty acid composition with particular reference to C18:2 cis-9, trans-11. Livestock Production Science 101, 5767.CrossRefGoogle Scholar
Caňeque, V., Velasco, S., Dĭaz, M. T., De Huidobro, F. R., Pěrez, C. & Lauzurica, S. (2003). Use of whole barley with a protein supplement to fatten lambs under different management systems and its effect on meat and carcass quality. Animal Research 52, 271285.CrossRefGoogle Scholar
Chikunya, S., Demirel, G., Enser, M., Wood, J. D., Wilkinson, R. G. & Sinclair, L. A. (2004). Biohydrogenation of dietary n−3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep. British Journal of Nutrition 91, 539550.CrossRefGoogle ScholarPubMed
Cooper, S. L., Sinclair, L. A., Wilkinson, R. G., Hallett, K. G., Enser, M. & Wood, J. D. (2004). Manipulation of the n−3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs. Journal of Animal Science 82, 14611470.CrossRefGoogle ScholarPubMed
Corl, B. A., Barbano, D. M., Bauman, D. E. & Ip, C. (2003). Cis-9, trans-11 CLA derived endogenously from trans-11 18:1 reduces cancer risk in rats. Journal of Nutrition 133, 28932900.CrossRefGoogle Scholar
Daniel, Z. C. T. R., Richards, S. E., Salter, A. M. & Buttery, P. J. (2004 a). Insulin and dexamethasone regulate stearoyl-CoA desaturase mRNA levels and fatty acid synthesis in ovine adipose tissue explants. Journal of Animal Science 82, 231237.CrossRefGoogle ScholarPubMed
Daniel, Z. C. T. R., Salter, A. M. & Buttery, P. J. (2004 b). Vitamin A regulation of stearoyl-CoA desaturase mRNA levels and fatty acid composition in sheep tissues. Animal Science 78, 237243.CrossRefGoogle Scholar
Daniel, Z. C. T. R., Wynn, R. J., Salter, A. M. & Buttery, P. J. (2004 c). Differing effects of forage and concentrate diets on the oleic acid and conjugated linoleic acid content of sheep tissues: the role of stearoyl-CoA desaturase. Journal of Animal Science 82, 747758.CrossRefGoogle ScholarPubMed
Daniel, Z. C. T. R., Hammond, L. E., Dawson, J. M., Salter, A. M. & Buttery, P. J. (2005). Effect of breed and age on stearoyl co-enzyme A desaturase expression in the omental adipose tissue of Texel, Beulah and Soay sheep. In Proceedings of the Winter Meeting of the British Society of Animal Science, p. 143. Penicuik, Midlothian: British Society of Animal Science.Google Scholar
Demirel, G., Wachira, A. M., Sinclair, L. A., Wilkinson, R. G., Wood, J. D. & Enser, M. (2004). Effects of dietary n−3 polyunsaturated fatty acids, breed and dietary vitamin E on the fatty acids of lamb muscle, liver and adipose tissue. British Journal of Nutrition 91, 551565.CrossRefGoogle ScholarPubMed
Demeyer, D. I. & Van Nevel, C. J. (1995). Transformations and effects of lipids in the rumen: three decades of research at Ghent University. Archives of Animal Nutrition 48, 119134.Google Scholar
Demeyer, D. I., Henderson, C. & Prins, R. A. (1978). Relative significance of exogenous and de novo synthesized fatty acids in the formation of rumen microbial lipids in vitro. Applied and Environmental Microbiology 35, 2431.CrossRefGoogle ScholarPubMed
Department of Health (1994). Nutritional aspects of cardiovascular disease. Report on Health and Social Subjects No. 46. London, UK: HMSO.Google Scholar
Dewhurst, R. J. & King, P. J. (1998). Effects of extended wilting, shading and chemical additives on the fatty acids in laboratory grass silages. Grass and Forage Science 53, 219224.CrossRefGoogle Scholar
Dewhurst, R. J., Scollan, N. D., Lee, M. R. F., Ougham, H. J. & Humphreys, M. O. (2003). Forage breeding and management to increase the beneficial fatty acid content of ruminant products. Proceedings of the Nutrition Society 62, 329336.CrossRefGoogle ScholarPubMed
Dijck-Brouwer, D. A. J., Hadders-Algra, M., Bouwstra, H., Decsi, T., Boehm, G., Martini, I. A., Boersma, E. R. & Muskiet, F. A. J. (2005). Lower fetal status of docosahexaenoic acid, arichidonic acid and essential fatty acids is associated with less favorable neonatal neurological condition. Prostaglandins, Leukotrines and Essential Fatty Acids 72, 2128.CrossRefGoogle Scholar
Dohme, F., Fievez, V., Raes, K. & Demeyer, D. I. (2003). Increasing levels of two different fish oils lower ruminal biohydrogenation of eicosapentaenoic and docosahexaenoic acid in vitro. Animal Research 52, 309320.CrossRefGoogle Scholar
Doreau, M. & Chilliard, Y. (1997). Digestion and metabolism of dietary fat in farm animals. British Journal of Nutrition 78, S15S35.CrossRefGoogle ScholarPubMed
Doreau, M. & Ferlay, A. (1994). Digestion and utilisation of fatty acids by ruminants. Animal Feed Science and Technology 45, 379396.CrossRefGoogle Scholar
Duncan, W. R. H. & Garton, G. A. (1978). Differences in the proportions of branched-chain fatty acids in subcutaneous triacylglycerols of barley-fed ruminants. British Journal of Nutrition 40, 2933.CrossRefGoogle ScholarPubMed
Elmore, J. S., Cooper, S. L., Enser, M., Mottram, D. S., Sinclair, L. A., Wilkinson, R. G. & Wood, J. D. (2005). Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb. Meat Science 69, 233242.CrossRefGoogle ScholarPubMed
Enser, M., Hallett, K., Hewitt, B., Fursey, G. A. J. & Wood, J. D. (1996). Fatty acid content and composition of English beef, lamb and pork at retail. Meat Science 42, 443456.CrossRefGoogle Scholar
Enser, M., Hallett, K. G., Hewett, B., Fursey, G. A. J., Wood, J. D. & Harrington, G. (1998). The polyunsaturated fatty acid composition of beef and lamb liver. Meat Science 49, 321327.CrossRefGoogle ScholarPubMed
Fisher, A. V., Enser, M., Richardson, R. I., Wood, J. D., Nute, G. R., Kurt, E., Sinclair, L. A. & Wilkinson, R. G. (2000). Fatty acid composition and eating quality of lamb types derived from four diverse breed×production systems. Meat Science 55, 141147.CrossRefGoogle Scholar
Fraser, M. D., Speijers, M. H. M., Theobald, V. J., Fychan, R. & Jones, R. (2004). Production performance and meat quality of grazing lambs finished on red clover, lucerne or perennial ryegrass swards. Grass and Forage Science 59, 345356.CrossRefGoogle Scholar
Fukuda, S., Suzuki, Y., Murai, M., Asanuma, N. & Hino, T. (2006). Augmentation of vaccenate production and suppression of vaccenate biohydrogenation in cultures of mixed ruminal microbes. Journal of Dairy Science 89, 10431051.CrossRefGoogle ScholarPubMed
Givens, D. I., Cottrill, B. R., Davies, M., Lee, P. A., Mansbridge, R. J. & Moss, A. R. (2001). Sources of n−3 polyunsaturated fatty acids additional to fish oil for livestock diets – a review. Nutrition Abstracts and Reviews, Series B 71, 53R83R.Google Scholar
Givens, D. I., Kliem, K. E. & Gibbs, R. A. (2006). The role of meat as a source of n−3 polyunsaturated fatty acids in the human diet. Meat Science 74, 209218.CrossRefGoogle ScholarPubMed
Gulati, S. K., Ashes, J. R. & Scott, T. W. (1999). Hydrogenation of eicosapentaenoic and docosahexaenoic acids and their incorporation into milk fat. Animal Feed Science and Technology 79, 5764.CrossRefGoogle Scholar
Harfoot, C. G. & Hazlewood, G. P. (1997). Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem (Eds Hobson, P. N. & Stewart, C. S.), pp. 382426. London, UK: Blackie Academic and Professional.CrossRefGoogle Scholar
Harfoot, C. G., Noble, R. C. & Moore, J. H. (1973). Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen. Biochemical Journal 132, 829832.CrossRefGoogle ScholarPubMed
Ip, C., Banni, S., Angioni, E., Carta, G., Mcginley, J., Thompson, H. J., Barbano, D. & Bauman, D. E. (1999). Conjugated linoleic acid-enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. Journal of Nutrition 129, 21352142.CrossRefGoogle ScholarPubMed
Kemp, J. D., Mahyuddin, M., Ely, D. G., Fox, J. D. & Moody, W. G. (1980). Effect of feeding systems, slaughter weight and sex on organoleptic properties, and fatty-acid composition of lamb. Journal of Animal Science 51, 321330.CrossRefGoogle Scholar
Kitessa, S. M., Gulati, S. K., Ashes, J. R., Scott, T. W. & Fleck, E. (2001). Effect of feeding tuna oil supplement protected against hydrogenation in the rumen on growth and n−3 fatty acid content of lamb fat and muscle. Australian Journal of Agricultural Research 52, 433437.CrossRefGoogle Scholar
Knight, T. W., Knowles, S. O., Death, A. F., Cummings, T. L. & Muir, P. D. (2004 a). Conservation of conjugated linoleic, trans-vaccenic and long chain omega-3 fatty acid content in raw and cooked lamb from two cross-breeds. New Zealand Journal of Agricultural Research 47, 129135.CrossRefGoogle Scholar
Knight, T. W., Tavendale, M. H., Death, A. F. & Agnew, M. (2004 b). Conjugated linoleic acid concentration (CLA) in the M. longissimums thoracis of the offspring of Romney ewes screened for high and low CLA in their milkfat. New Zealand Journal of Agricultural Research 47, 287297.CrossRefGoogle Scholar
Kott, R. W., Hatfield, P. G., Bergman, J. W., Flynn, C. R., Van Wagoner, H. & Boles, J. A. (2003). Feedlot performance, carcass composition, and muscle and fat CLA concentrations of lambs fed diets supplemented with safflower seeds. Small Ruminant Research 49, 1117.CrossRefGoogle Scholar
Larick, D. K. & Turner, B. E. (1990). Flavor characteristics of forage-fed and grain-fed beef as influenced by phospholipid and fatty acid compositional differences. Journal of Food Science 55, 312317.CrossRefGoogle Scholar
Lee, J. H., Waller, J. C., Melton, S. L., Saxton, A. M. & Pordesimo, L. O. (2004). Feeding encapsulated ground full-fat soybeans to increase polyunsaturated fat concentrations and effects on flavor volatiles in fresh lamb. Journal of Animal Science 82, 27342741.CrossRefGoogle ScholarPubMed
Lee, M. R. F., Harris, L. J., Dewhurst, R. J., Merry, R. J. & Scollan, N. D. (2003). The effect of clover silages on long chain fatty acid rumen transformations and digestion in beef steers. Animal Science 76, 491501.CrossRefGoogle Scholar
Lee, M. R. F., Colmenero, J. D. O., Winters, A. L., Scollan, N. D. & Minchin, F. R. (2006). Polyphenol oxidase activity in grass and its effect on plant-mediated lipolysis and proteolysis of Dactylis glomerata (cocksfoot) in a simulated rumen environment. Journal of the Science of Food and Agriculture 86, 15031511.CrossRefGoogle Scholar
Lock, A. L., Parodi, P. W. & Bauman, D. E. (2005). The biology of trans fatty acids: implications for human health and the dairy industry. The Australian Journal of Dairy Technology 60, 134142.Google Scholar
Lock, A. L., Teles, B. M., Perfield, J. W. II, Bauman, D. E. & Sinclair, L. A. (2006). A conjugated linoleic acid supplement containing trans-10, cis-12 CLA reduces milk fat synthesis in lactating sheep. Journal of Dairy Science 89, 15251532.CrossRefGoogle ScholarPubMed
Loor, J. J., Ueda, K., Ferlay, A., Chilliard, Y. & Doreau, M. (2004). Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage: concentrate ratio and linseed oil in dairy cows. Journal of Dairy Science 87, 24722485.CrossRefGoogle ScholarPubMed
Mir, Z., Rushfeldt, M. L., Mir, P. S., Paterson, L. J. & Weselake, R. J. (2000). Effect of dietary supplementation with either conjugated linoleic acid (CLA) or linoleic acid rich oil on the CLA content of lamb tissues. Small Ruminant Research 36, 2531.CrossRefGoogle Scholar
Moibi, J. A. & Christopherson, R. J. (2001). Effect of environmental temperature and a protected lipid supplement on the fatty acid profile of ovine longissimus dorsi muscle, liver and adipose tissues. Livestock Production Science 69, 245254.CrossRefGoogle Scholar
Moore, J. H. & Christie, W. W. (1984). Digestion, absorption and transport of fats in ruminant animals. In Fats in Animal Nutrition (Ed. Wiseman, J.), pp. 123149. London, UK: Butterworth.CrossRefGoogle Scholar
Noble, R. C. (1981). Digestion, absorption and transport of lipid. In Lipid Metabolism in Ruminant Animals (Ed. Christie, W. W.), pp. 5793. Oxford, UK: Pergamon Press.CrossRefGoogle Scholar
Nuernberg, K., Nuernberg, G., Ender, K., Dannenberger, D., Schabbel, W., Grumbach, S., Zupp, W. & Steinhart, H. (2005). Effect of grass vs. concentrate feeding on the fatty acid profile of different fat depots in lambs. European Journal of Lipid Science and Technology 107, 737745.CrossRefGoogle Scholar
Palmquist, D. L., St-Pierre, N. & McClure, K. E. (2004). Tissue fatty acid profiles can be used to quantify endogenous rumenic acid synthesis in lambs. Journal of Nutrition 134, 24072414.CrossRefGoogle ScholarPubMed
Petit, H., Rioux, R., D'Oliveira, P. S. & Do Prado, I. N. (1997). Performance of growing lambs fed grass silage with raw or extruded soybean or canola seeds. Canadian Journal of Animal Science 77, 455463.CrossRefGoogle Scholar
Ponnampalam, E. N., Sinclair, A. J., Egan, A. R., Blakeley, S. J., Li, D. & Leury, B. J. (2001). Effect of dietary modification of muscle long chain n−3 fatty acid on plasma insulin and lipid metabolites, carcass traits, and fat deposition in lambs. Journal of Animal Science 79, 895903.CrossRefGoogle ScholarPubMed
Pottier, J., Focant, M., Debier, C., De Buysser, G., Goffe, C., Mignolet, E., Froidmont, E. & Larondelle, Y. (2006). Effect of dietary vitamin E on rumen biohydrogenation pathways and milk fat depression in dairy cows fed high-fat diets. Journal of Dairy Science 89, 685692.CrossRefGoogle ScholarPubMed
Raes, K., De Smet, S. & Demeyer, D. (2004). Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated lioleic acid in lamb, beef and pork: a review. Animal Feed Science and Technology 113, 199221.CrossRefGoogle Scholar
Rowe, A., Macedo, F. A. F., Visentainer, J. V., Souza, N. E. & Matsushita, M. (1999). Muscle composition and fatty acid profile in lambs fattened in drylot or pasture. Meat Science 51, 283288.CrossRefGoogle ScholarPubMed
SACN/COT (2004). Advice on Fish Consumption: Benefits and Risk. London, UK: TSO.Google Scholar
Sanderson, P., Finnegan, Y. E., Williams, C. M., Calder, P. C., Burdge, G. C., Wooton, S. A., Griffin, B. A., Millward, D. J., Pegge, N. C. & Bemelmans, W. J. E. (2002). UK food standards agency α-linolenic acid workshop report. British Journal of Nutrition 88, 573579.CrossRefGoogle ScholarPubMed
Santos-Silva, J., Mendes, I. A., Portugal, P. V. & Bessa, R. J. B. (2004). Effect of particle size and soybean oil supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs. Livestock Production Science 90, 7988.CrossRefGoogle Scholar
Sañudo, C., Enser, M. E., Campo, M. M., Nute, G. R., Marĭa, G., Sierra, I. & Wood, J. D. (2000). Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Science 54, 339346.CrossRefGoogle ScholarPubMed
Sheard, P. R., Enser, M., Wood, J. D., Nute, G. R., Gill, B. P. & Richardson, R. I. (2000). Shelf life and quality of pork and pork products with raised n−3 PUFA. Meat Science 55, 213221.CrossRefGoogle Scholar
Sinclair, L. A., Cooper, S. L., Chikunya, S., Wilkinson, R. G., Hallett, K. G., Enser, M. & Wood, J. D. (2005 a). Biohydrogenation of n−3 polyunsaturated fatty acids in the rumen and their effects on microbial metabolism and plasma fatty acid concentrations in sheep. Animal Science 81, 239248.CrossRefGoogle Scholar
Sinclair, L. A., Cooper, S. L., Huntington, J. A., Wilkinson, R. G., Hallett, K. G., Enser, M. & Wood, J. D. (2005 b). In vitro biohydrogenation of n−3 polyunsaturated fatty acids protected against ruminal microbial metabolism. Animal Feed Science and Technology 124, 579596.CrossRefGoogle Scholar
Sinclair, L. A., Lock, A. L., Early, R. & Bauman, D. E. (in press). Effects of trans-10, cis-12 conjugated linoleic acid on ovine milk fat synthesis and cheese properties. Journal of Dairy Science.Google Scholar
Sprecher, H., Luthria, D. L., Mohammed, B. S. & Baykousheva, S. P. (1995). Re-evaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. Journal of Lipid Research 36, 24712477.CrossRefGoogle Scholar
Turkki, P. R. & Campbell, A. M. (1967). Relation of phospholipid to other tissue components in two beef muscles. Journal of Food Science 32, 151154.CrossRefGoogle Scholar
Valvo, M. A., Lanza, M., Bella, M., Fasone, V., Scerra, M., Biondi, L. & Priolo, A. (2005). Effect of ewe feeding system (grass v. concentrate) on intramuscular fatty acids of lambs raised exclusively on maternal milk. Animal Science 81, 431436.CrossRefGoogle Scholar
Vipond, J. E., Marie, S. & Hunter, E. A. (1995). Effects of clover and milk in the diet of grazed lambs on meat quality. Animal Science 60, 231238.CrossRefGoogle Scholar
Wachira, A. M., Sinclair, L. A., Wilkinson, R. G., Hallett, K., Enser, M. & Wood, J. D. (2000). Rumen biohydrogenation of n−3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. Journal of Agricultural Science, Cambridge 135, 419428.CrossRefGoogle Scholar
Wachira, A. M., Sinclair, L. A., Wilkinson, R. G., Enser, M., Wood, J. D. & Fisher, A. V. (2002). Effects of dietary fat source and breed on the carcass composition, n−3 polyunsaturated fatty acid and conjugated linoleic acid content of sheep meat and adipose tissue. British Journal of Nutrition 88, 697709.CrossRefGoogle ScholarPubMed
Ward, R. J., Travers, M. T., Richards, S. E., Vernon, R. G., Salter, A. M., Buttery, P. J. & Barber, M. C. (1998). Stearoyl-CoA desaturase mRNA is transcribed from a single gene in the ovine genome. Biochimica et Biophysica Acta 1391, 145156.CrossRefGoogle ScholarPubMed
Whittington, F. M., Dunn, R., Nute, G. R., Richardson, R. I. & Wood, J. D. (2006). Effect of pasture type on lamb product quality. In New Developments in Sheepmeat Quality. Proceedings of the Langford Food Industry Conference, pp. 2731. Penicuik, Midlothian: British Society of Animal Science.Google Scholar
Williams, C. M. & Burdge, G. (2006). Long-chain n−3 PUFA: plant v. marine sources. Proceedings of the Nutrition Society 65, 4250.CrossRefGoogle Scholar
Wood, J. D. & Enser, M. (1997). Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. British Journal of Nutrition 78 (Supplement 1), S49S60.CrossRefGoogle ScholarPubMed
WHO (2003). Diet, nutrition and the prevention of chronic diseases. Report of a joint WHO/FAO Expert Consultation. WHO Technical Report Series 916. Geneva, Switzerland: WHO.Google Scholar
Wynn, R. J., Daniel, Z. C. T. R., Flux, C. L., Craigon, J., Salter, A. M. & Buttery, P. J. (2006). Effect of feeding rumen-protected conjugated linoleic acid on carcass characteristics and fatty acid composition of sheep tissues. Journal of Animal Science 84, 34403450.CrossRefGoogle ScholarPubMed
Yaqoob, P., Tricon, S., Williams, C. M., Grimble, R. F., Burdge, G. C. & Calder, P. C. (2006). Conjugated linoleic acid and human health-related outcomes. Nutrition Bulletin 31, 9399.CrossRefGoogle Scholar
Young, O. A., Cruickshank, G. J., Maclean, K. S. & Muir, P. D. (1994). Quality of meat from lambs grazed on seven pasture species in Hawkes Bay. New Zealand Journal of Agricultural Research 37, 177186.CrossRefGoogle Scholar
Young, O. A. & Baumeister, B. M. B. (1999). The effect of diet on the flavour of cooked beef and the odour compounds in beef fat. New Zealand Journal of Agricultural Research 42, 297304.CrossRefGoogle Scholar
Young, O. A., Lane, G. A., Priolo, A. & Fraser, K. (2003). Pastoral and species flavour in lambs raised on pasture, lucerne or maize. Journal of the Science of Food and Agriculture 83, 93104.CrossRefGoogle Scholar