Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-21T00:55:07.916Z Has data issue: false hasContentIssue false

Crop biotechnology: prospects and opportunities

Published online by Cambridge University Press:  25 November 2010

J. M. DUNWELL*
Affiliation:
School of Biological Sciences, University of Reading, Reading, UK
*
To whom all correspondence should be addressed. Email: j.m.dunwell@reading.ac.uk

Summary

This paper is a brief review summarizing some of the important areas of activity in crop biotechnology likely to be exploited over the medium term (10–20 years), with an emphasis on agronomic traits. It provides details on various approaches to improving the tolerance of crops to abiotic and to biotic stresses. Additionally, it describes recent advances in understanding the factors that affect the intrinsic performance of plants, for example, in terms of their photosynthetic efficiency and their genetic composition. The review also provides a short selection of recently granted patents and patent applications, as this information often identifies those subjects that might be commercially exploited over this period. Finally, it provides a summary of the various predictions of the commercial development pipeline based upon a range of transgenes in major crop species.

Type
Foresight Project on Global Food and Farming Futures
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albertini, E., Barcaccia, G., Mazzucato, A., Sharbel, T. F. & Falcinelli, M. (2009). Apomixis in the era of biotechnology. In Plant Developmental Biology – Biotechnological Perspectives: Volume 1 (Eds Pua, E. C. & Davey, M.), pp. 405436. Berlin: Springer Verlag.Google Scholar
Aragão, F. J. L. & Faria, J. C. (2009). First transgenic geminivirus-resistant plant in the field. Nature Biotechnology 27, 10861088.CrossRefGoogle ScholarPubMed
Aviezer, D., Brill-Almon, E., Shaaltiel, Y., Hashmueli, S., Bartfeld, D., Mizrachi, S., Liberman, Y., Freeman, A., Zimran, A. & Galun, E. (2009). A plant-derived recombinant human glucocerebrosidase enzyme – a preclinical and Phase I investigation. PLoS ONE 4, e4792. doi:10.1371/journal.pone.0004792CrossRefGoogle ScholarPubMed
Beatty, P. H., Shrawat, A. K., Carroll, R. T., Zhu, T. & Good, A. G. (2009). Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase. Plant Biotechnology Journal 7, 562576.CrossRefGoogle ScholarPubMed
Butelli, E., Titta, L., Giorgio, M., Mock, H. P., Matros, A., Peterek, S., Schijlen, E. G. W. M., Hall, R. D., Bovy, A. G., Luo, J. & Martin, C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology 26, 13011308.CrossRefGoogle ScholarPubMed
Castiglioni, P., Warner, D., Bensen, R. J., Anstrom, D. C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., D'Ordine, R., Navarro, S., Back, S., Fernandes, M., Targolli, J., Dasgupta, S., Bonin, C., Luethy, M. H. & Heard, J. E. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology 147, 446455.CrossRefGoogle ScholarPubMed
Chinnusamy, V. & Zhu, J-K. (2009). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology 12, 133139.CrossRefGoogle ScholarPubMed
Degenhardt, J., Hiltpold, I., Köllner, T. G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B. E., Ellersieck, M. R. & Turlings, T. C. J. (2009). Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences of the USA 106, 1321313218.CrossRefGoogle ScholarPubMed
D'Erfurth, I., Jolivet, S., Froger, N., Catrice, O., Novatchkova, M. & Mercier, R. (2009). Turning meiosis into mitosis. PLoS Biology 7, e1000124. doi:10.1371/journal.pbio.1000124.CrossRefGoogle ScholarPubMed
Dunwell, J. M. (2010 a). Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal 8, 377424.CrossRefGoogle ScholarPubMed
Dunwell, J. M. (2010 b). Patent and IPR issues. In Biotech Plants (Eds Kole, C., Michler, C. H., Abbott, A. G. & Hall, T. C.), pp. 411433. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Duvick, D. N. (1999). Commercial strategies for exploitation of heterosis. In The Genetics and Exploitation of Heterosis in Crops (Eds Coors, J. G. & Pandey, S.), pp. 295304. Madison, WI: ASA, CSSA, SSSA.Google Scholar
Edmeades, G. O. (2008). Drought Tolerance in Maize: an Emerging Reality. Companion paper to Executive Summary ISAAA Brief No. 39. Global Status of Commercialized Biotech/GM Crops: 2008 (Ed. James, C.). Ithaca, NY: ISAAA.Google Scholar
Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S-Y., Cutler, S. R., Sheen, J., Rodriguez, P. L. & Zhu, J-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660664.CrossRefGoogle ScholarPubMed
Gao, H., Smith, J., Yang, M., Jones, S., Djukanovic, V., Nicholson, M. G., West, A., Bidney, D., Falco, S. C., Jantz, D. & Lyznik, L. A. (2010). Heritable targeted mutagenesis in maize using a designed endonuclease. The Plant Journal 61, 176187.CrossRefGoogle ScholarPubMed
Gore, M. A., Chia, J-M., Elshire, R. J., Sun, Q., Ersoz, E. S., Hurwitz, B. L., Peiffer, J. A., Mcmullen, M. D., Grills, G. S., Ross-Ibarra, J., Ware, D. H. & Buckler, E. S. (2009). A first-generation haplotype map of maize. Science 326, 11151117.CrossRefGoogle ScholarPubMed
Gust, A. A., Brunner, F. & Nürnberger, T. (2010). Biotechnological concepts for improving plant innate immunity. Current Opinion in Biotechnology 21, 204210.CrossRefGoogle ScholarPubMed
He, Y. (2009). Control of the transition to flowering by chromatin modifications. Molecular Plant 2, 554564.CrossRefGoogle ScholarPubMed
Heaton, E. A., Flavell, R. B., Mascia, P. N., Thomas, S. R., Dohleman, F. G. & Long, S. P. (2008). Herbaceous energy crop development: recent progress and future prospects. Current Opinion in Biotechnology 19, 202209.CrossRefGoogle ScholarPubMed
Hibberd, J. M., Sheehy, J. E. & Langdale, J. A. (2008). Using C4 photosynthesis to increase the yield of rice – rationale and feasibility. Current Opinion in Plant Biology 11, 228231.CrossRefGoogle ScholarPubMed
Kumar, S. V. & Wigge, P. A. (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136147.CrossRefGoogle ScholarPubMed
Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., Van Esse, H. P., Smoker, M., Rallapalli, G., Thomma, B. P. H. J., Staskawicz, B., Jones, J. D. G. & Zipfel, C. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology 28, 365369.CrossRefGoogle ScholarPubMed
Li, Z., Moon, B. P., Xing, A., Liu, Z-B., Mccardell, R. P., Damude, H. G. & Falco, S. C. (in press). Stacking multiple transgenes at a selected genomic site via repeated recombinase mediated DNA cassette exchanges. Plant Physiology. DOI:10.1104/pp.110.160093.Google Scholar
Liu, J., Magalhaes, J. V., Shaff, J. & Kochian, L. V. (2009). Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant Journal 57, 389399.CrossRefGoogle ScholarPubMed
Ma, W., Li, J., Ma, L., Wang, F., Sisák, I., Cushman, G. & Zhang, F. (2009). Nitrogen flow and use efficiency in production and utilization of wheat, rice, and maize in China. Agricultural Systems 99, 5363.CrossRefGoogle Scholar
Millet, Y. A., Danna, C. H., Clay, N. K., Songnuan, W., Simon, M. D., Werck-Reichhart, D. & Ausubel, F. M. (2010). Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22, 973990.CrossRefGoogle ScholarPubMed
Murchie, E. H., Pinto, M. & Horton, P. (2009). Agriculture and the new challenges for photosynthesis research. New Phytologist 181, 532552.CrossRefGoogle ScholarPubMed
Nykiforuk, C. L., Shen, Y., Murray, E. W., Boothe, J. G., Busseuil, D., Rhéaume, E., Tardif, J. C., Reid, A. & Moloney, M. M. (in press). Expression and recovery of biologically active recombinant Apolipoprotein AIMilano from transgenic safflower (Carthamus tinctorius) seeds. Plant Biotechnology Journal doi: 10.1111/j.1467-7652.2010.00546.x.Google Scholar
Papdi, C., Joseph, M. P., Salamó, I. P., Vidal, S. & Szabados, L. (2009). Genetic technologies for the identification of plant genes controlling environmental stress responses. Functional Plant Biology 36, 696720.CrossRefGoogle ScholarPubMed
Paschold, A., Marcon, C., Hoecker, N. & Hochholdinger, F. (2009). Molecular dissection of heterosis manifestation during early maize root development. Theoretical and Applied Genetics 120, 383388.CrossRefGoogle Scholar
Peers, G., Truong, T. B., Ostendorf, E., Busch, A., Elrad, D., Grossman, A. R., Hippler, M. & Niyogi, K. K. (2009). An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518521.CrossRefGoogle ScholarPubMed
Phillips, R. L. (2009). Mobilizing science to break yield barriers. Crop Science 50, S-99–S-108.Google Scholar
Price, D. R. G. & Gatehouse, J. A. (2008). RNAi-mediated crop protection against insects. Trends in Biotechnology 26, 393400.CrossRefGoogle ScholarPubMed
Ravi, M. & Chan, S. W. L. (2010). Haploid plants produced by centromere-mediated genome elimination. Nature 464, 615618.CrossRefGoogle ScholarPubMed
Ravi, M., Marimuthu, M. P. A. & Siddiqi, I. (2008). Gamete formation without meiosis in Arabidopsis. Nature 451, 11211124.CrossRefGoogle ScholarPubMed
Rodriguez, R. E., Mecchia, M. A., Debernardi, J. M., Schommer, C., Weigel, D. & Palatnik, J. F. (2010). Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137, 103112.CrossRefGoogle ScholarPubMed
Royal Society (2009). Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. London: The Royal Society.Google Scholar
Ryan, P. R., Raman, H., Gupta, S., Horst, W. J. & Delhaize, E. (2009). A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiology 149, 340351.CrossRefGoogle ScholarPubMed
Sheard, L. B. & Zheng, N. (2009). Plant biology: signal advance for abscisic acid. Nature 462, 575576.CrossRefGoogle ScholarPubMed
Sheehy, J. E., Mitchell, P. L. & Hardy, B. (2008). Charting New Pathways to C 4Rice. Singapore & Los Baños: World Scientific Publishing & International Rice Research Institute.CrossRefGoogle Scholar
Stein, A. J. & Rodríguez-Cerezo, E. (2010). International trade and the global pipeline of new GM crops. Nature Biotechnology 28, 2325.CrossRefGoogle ScholarPubMed
Sun, J., Yang, L., Wang, Y. & Ort, D. R. (2009). FACE-ing the global change: opportunities for improvement in photosynthetic radiation use efficiency and crop yield. Plant Science 177, 511522.CrossRefGoogle Scholar
Swanson-Wagner, R. A., Decook, R., Jia, Y., Bancroft, T., Ji, T., Zhao, X., Nettleton, D. & Schnable, P. S. (2009). Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326, 11181120.CrossRefGoogle ScholarPubMed
Wang, X., Gowik, U., Tang, H., Bowers, J. E., Westhoff, P. & Paterson, A. H. (2009). Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biology 10, R68. doi:10.1186/gb-2009-10-6-r68.CrossRefGoogle ScholarPubMed
Weinthal, D., Tovkach, A., Zeevi, V. & Tzfira, T. (2010). Genome editing in plant cells by zinc finger nucleases. Trends in Plant Science 15, 308321.CrossRefGoogle ScholarPubMed
Yu, W., Han, F., Gao, Z., Vega, J. M. & Birchler, J. A. (2007). Construction and behavior of engineered minichromosomes in maize. PNAS 104, 89248929.CrossRefGoogle ScholarPubMed