Article contents
Faecal index to estimate intake and digestibility in grazing sheep
Published online by Cambridge University Press: 31 May 2013
Summary
The current research was carried out to evaluate the use of crude protein and fibre components in faeces for estimating intake and digestibility in sheep fed with pearl millet (Pennisetum americanum (L.) Leeke). The equations were developed from four trials in metabolism cages with 16 sheep in each trial. Each animal received a different quantity of millet leaves in the diet: 0·015, 0·020 and 0·025 dry matter (DM) as a proportion of live weight (LW) and ad libitum with at least 0·2 of daily feed refusals. Organic matter intake (OMI, g/day) was measured, through the difference between offer and refusals; total faeces were collected for 5 days, which was used to determine faecal crude protein (CPf, g/day and g/kg of organic matter (OM)), faecal neutral detergent fibre (NDFf, g/day and g/kg OM), faecal acid detergent fibre (ADFf, g/day and g/kg OM) and OM digestibility (OMD). Linear regression equations were calculated to determine the relationship between OMI and CPf (P<0·001, R2=0·90, relative prediction error (RPE=14·02%). A multiple linear equation was generated for OMI including CPf and NDFf (P<0·001, R2=0·94; RPE=9·25%). Hyperbolic (single and multiple) and exponential models were tested to estimate OMD, where the hyperbolic multiple model including CPf and NDFf showed lower RPE (3·90%). These equations for estimating OMI and OMD were evaluated on sheep grazing P. americanum fertilized with increasing levels of nitrogen (N) (50, 100, 200 and 400 kg N/ha), comparing measured and estimated OMI. The intake estimated by multiple regression (CP and NDFf) showed a higher R2 (0·98) and lower RPE (5·25%) than the simple (CPf only) linear equation (R2=0·94; RPE=20·45%). The results demonstrated the feasibility of using the faecal index generated in metabolism cages for estimating intake and digestibility in sheep grazing P. americanum.
- Type
- Animal Research Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2013
References
REFERENCES
- 9
- Cited by