Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T02:00:28.781Z Has data issue: false hasContentIssue false

A fungal endophyte consortium counterbalances the negative effects of reduced nitrogen input on the yield of field-grown spring barley

Published online by Cambridge University Press:  24 July 2017

B. R. MURPHY*
Affiliation:
School of Natural Sciences & Trinity Centre for Biodiversity Research, Trinity College Dublin, College Green, Dublin 2, Ireland UCD School of Biology & Environmental Science and UCD Earth Institute, University College Dublin, Dublin 4, Ireland
T. R. HODKINSON
Affiliation:
School of Natural Sciences & Trinity Centre for Biodiversity Research, Trinity College Dublin, College Green, Dublin 2, Ireland
F. M. DOOHAN
Affiliation:
UCD School of Biology & Environmental Science and UCD Earth Institute, University College Dublin, Dublin 4, Ireland
*
*To whom all correspondence should be addressed. Email: murphb16@tcd.ie

Summary

The use of chemicals to fertilize crops incurs economic and environmental costs and it is widely recognized that the current level of chemical fertilizer use is unsustainable in many intensive farming systems. Any methods that can reduce fertilizer input and still maintain acceptable yields would be of great benefit to both the farmer and the environment. The use of beneficial endophytes as crop inoculants may go some way towards improving crop yields beyond that achievable using fertilizer increases alone. Field trials were conducted over two seasons on three contrasting field sites to test the effects of fungal endophytes from a wild barley relative on three barley cultivars (Mickle, Planet and Propino). Seeds were either untreated or dressed with a consortium of four endophyte strains, and three levels of nitrogen (N) were applied to both treatments: full N, 50% N and 0 N. On the field site with the lowest overall N input, the endophyte treatment with 50% N restored yield for ‘Planet’ to that associated with untreated plants receiving the full N input. On the same site and with the same cultivar, endophyte treatment increased yield by 15% under full N, and by a mean 12% for all three cultivars with 50% N input. Over both seasons and all three sites, the endophyte treatment increased yield for the cultivar Planet by a mean of 9%. For the endophyte-associated increase in the variety Planet grain yield over the untreated trials strong correlations were found between increased yield and each of low rainfall, greater evaporation and greater number of degree days above the base. Furthermore, the efficacy of the endophytes was not removed by regular foliar fungicidal treatment. These results suggest that fungal endophytes can contribute to improving barley yield grown in low rainfall areas and under a range of fertilizer input regimes, provided that endophyte treatments are applied to compatible crop cultivars and sites.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achatz, B., von Rüden, S., Andrade, D., Neumann, E., Pons-Kühnemann, J., Kogel, K-H., Franken, P. & Waller, F. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and Soil 333, 5970.Google Scholar
Ansari, M. W., Trivedi, D. K., Sahoo, R. K., Gill, S. S. & Tuteja, N. (2013). A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiology and Biochemistry 70, 403410.Google Scholar
Bagde, U. S., Prasad, R. & Varma, A. (2011). Influence of culture filtrate of Piriformospora indica on growth and yield of seed oil in Helianthus annus . Symbiosis 53, 83. doi:10.1007/s13199-011-0114-6.Google Scholar
Behie, S. W., Zelisko, P. M. & Bidochka, M. J. (2012). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336, 15761577.Google Scholar
Biello, D. (2008). Fertilizer runoff overwhelms streams and rivers creating vast ‘dead zones’. Scientific American. Available online at http://www.scientificamerican.com/article/fertilizer-runoff-overwhelms-streams/ (accessed 22/01/2016).Google Scholar
Birch, C. J. & Long, K. E. (1990). Effect of nitrogen on the growth, yield and grain protein content of barley (Hordeum vulgare). Australian Journal of Experimental Agriculture 30, 237242.CrossRefGoogle Scholar
Brenner, K., You, L. & Arnold, F. H. (2008). Engineering microbial consortia, a new frontier in synthetic biology. Trends in Biotechnology 26, 483489.Google Scholar
Buysens, C., Dupré De Boulois, H. & Declerck, S. (2015). Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis? Mycorrhiza 25, 277288.Google Scholar
Dobermann, A. & Nelson, R. (2013). Solutions for Sustainable Agriculture and Food Systems. Technical Report for the Post-2015 Development Agenda. New York, NY: Sustainable Development Solutions Network. Available online at http://unsdsn.org/resources/publications/solutions-for-sustainable-agriculture-and-food-systems/, (accessed 25 May 2016).Google Scholar
FAO (2015). World Fertilizer Trends and Outlook to 2018. Rome, Italy: FAO.Google Scholar
Harvey, I. C., Fletcher, L. R. & Emms, L. M. (1982). Effects of several fungicides on the Lolium endophyte in ryegrass plants, seeds and in culture. New Zealand Journal of Agricultural Research 25, 601606.Google Scholar
Hashem, M. & Ali, E. (2004). Epicoccum Nigrum as biocontrol agent of Pythium damping-off and root-rot of cotton seedlings. Archives of Phytopathology and Plant Protection 37, 283297.Google Scholar
Johnson, A. & Harrison, M. (2015). The increasing problem of nutrient runoff on the coast. American Scientist 103, 98101.Google Scholar
Johnson, J. M., Alex, T. & Oelmüller, R. (2014). Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. Journal of Tropical Agriculture 52, 103122.Google Scholar
Khan, A. L. & Lee, I-J. (2013). Endophytic Penicillium funiculosum LHL06 sretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biology 13, 86. doi: 10.1186/1471-2229-13-86.Google Scholar
Kumar, V., Sarma, M. V. R. K., Saharan, K., Srivastava, R., Kumar, L., Sahai, V., Bisaria, V. S. & Sharma, A. K. (2012). Effect of formulated root endophytic fungus Piriformospora indica and plant growth promoting rhizobacteria fluorescent pseudomonads R62 and R81 on Vigna mungo . World Journal of Microbiology & Biotechnology 28, 595603.Google Scholar
Kusari, S., Singh, S. & Jayabaskaran, C. (2014). Biotechnological potential of plant-associated endophytic fungi, hope versus hype. Trends in Biotechnology 32, 297303.CrossRefGoogle ScholarPubMed
Le Cocq, K., Gurr, S. J., Hirsch, P. R. & Mauchline, T. H. (2017). Microreview, exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology 18, 469473.Google Scholar
Lugtenberg, B. J., Caradus, J. R. & Johnson, L. J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology 92, fiw194. doi: 10.1093/femsec/fiw194.Google Scholar
Murphy, B. R., Hodkinson, T. R. & Doohan, F. M. (2013). Mechanisms of beneficial colonisation of barley by fungal root endophytes. Aspects of Applied Biology 120, 3544.Google Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. & Hodkinson, T. R. (2015 a). Fungal endophytes enhance agronomically important traits in severely drought-stressed barley. Journal of Agronomy and Crop Science 201, 419427.Google Scholar
Murphy, B. R., Doohan, F. M. & Hodkinson, T. R. (2015 b). Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis 65, 17.Google Scholar
Murphy, B. R., Doohan, F. M. & Hodkinson, T. R. (2015 c). Persistent fungal root endophytes isolated from a wild barley species suppress seed-borne infections in a barley cultivar. BioControl 60, 281292.Google Scholar
Murphy, B. R., Doohan, F. M. & Hodkinson, T. R. (2016). Suppression of vertically transmitted infections of barley by fungal root endophytes is linked to the soil properties of the isolate origin. IOBC Bulletin 115, 3136.Google Scholar
Murphy, B. R., Doohan, F. M. & Hodkinson, T. R. (2017). A seed dressing combining fungal endophyte spores and fungicides improves seedling survival and early growth in barley and oat. Symbiosis 71, 6976.Google Scholar
Nelissen, H., Moloney, M. & Inzé, D. (2014). Translational research, from pot to plot. Plant Biotechnology Journal 12, 277285.Google Scholar
Nisa, H., Kamili, A. N., Nawchoo, I. A., Shafi, S., Shameem, N. & Bandh, S. A. (2015). Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microbial Pathogenesis 82, 5059.Google Scholar
O'Donovan, T. & O'Mahony, J. (2014). Crops: Costs and Returns 2014. Crops Environment and Land Use Programme . Oak Park, Carlow, Ireland: Teagasc. Available online at https://www.teagasc.ie/media/website/publications/2014/TeagascCropMargins2014.pdf (accessed 25 May /2016).Google Scholar
Owen, D., Williams, A. P., Griffith, G. W. & Withers, P. J. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Applied Soil Ecology 86, 4154.Google Scholar
Prior, R., Mittelbach, M. & Begerow, D. (2017). Impact of three different fungicides on fungal epi- and endophytic communities of common bean (Phaseolus vulgaris). and broad bean (Vicia faba). Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes 52, 376386.Google Scholar
Rolston, M. P., Archie, W. J. & Simpson, W. R. (2002). Tolerance of AR1 Neotyphodium endophyte to fungicides used in perennial ryegrass seed production. New Zealand Plant Protection 55, 322326.Google Scholar
Sasan, R. K. & Bidochka, M. J. (2012). The insect-pathogenic fungus Metarhizium robertsii (clavicipitaceae). is also an endophyte that stimulates plant root development. American Journal of Botany 99, 101107.CrossRefGoogle ScholarPubMed
Searchinger, T. (2013). The great balancing act, three needs. In Creating A Sustainable Food Future: A Menu of Solutions to Sustainably Feed More Than 9 Billion People by 2050. World Resources Report 2013–14: Interim Findings (Lead author: Searchinger, T.), pp. 1116. Washington, DC: World Resources Institute.Google Scholar
Selosse, M-A. & Rousset, F. (2011). The plant-fungal marketplace. Science 333, 828829.Google Scholar
Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A. & Oelmüller, R. (2005). The endophytic fungus piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in. The Journal of Biological Chemistry 280, 2624126247.Google Scholar
Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmüller, R. & Lou, B. (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology 167, 10091017.Google Scholar
Upson, R., Read, D. J. & Newsham, K. K. (2009). Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20, 111.Google Scholar
Usuki, F. & Narisawa, K. (2007). A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99, 175184.Google Scholar
Vandegrift, R., Roy, B. A., Pfeifer-Meister, L., Johnson, B. R. & Bridgham, S. D. (2015). The herbaceous landlord, integrating the effects of symbiont consortia within a single host. PeerJ 3, e1379. doi:10.7717/peerj.1379.CrossRefGoogle ScholarPubMed
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist 206, 11961206.Google Scholar
Van der Heijden, M. G. A., Martin, F. M., Selosse, M-A. & Sanders, I. R. (2015). Mycorrhizal ecology and evolution, the past, the present, and the future. New Phytologist 205, 14061423.Google Scholar
Vidal, S. & Jaber, L. R. (2015). Entomopathogenic fungi as endophytes, plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science 109, 4654.Google Scholar
Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., Von Wettstein, D., Franken, P. & Kogel, K.-H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America 102, 1338613391.Google Scholar
Wang, M., Zheng, Q., Shen, Q. & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences 14, 73707390.Google Scholar
Wani, Z. A., Ashraf, N., Mohiuddin, T. & Riyaz-Ul-Hassan, S. (2015). Plant-endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology 99, 29552965.Google Scholar
Worchel, E. R., Giauque, H. E. & Kivlin, S. N. (2013). Fungal symbionts alter plant drought response. Microbial Ecology 65, 671678.Google Scholar
Yadav, V., Kumar, M., Deep, D. K., Kumar, H., Sharma, R., Tripathi, T., Tuteja, N., Saxena, A. K. & Johri, A. K. (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. The Journal of Biological Chemistry 285, 2653226544.Google Scholar
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.Google Scholar
Zuccaro, A., Lahrmann, U. & Langen, G. (2014). Broad compatibility in fungal root symbioses. Current Opinion in Plant Biology 20, 135145.CrossRefGoogle ScholarPubMed