Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T06:55:00.938Z Has data issue: false hasContentIssue false

Methane emissions and growth performance of young Nellore bulls fed crude glycerine- v. fibre-based energy ingredients in low or high concentrate diets

Published online by Cambridge University Press:  09 August 2016

J. F. LAGE*
Affiliation:
Trouw Nutrition Brazil, Bellman, R&D – Campinas, SP, Brazil
E. SAN VITO
Affiliation:
Department of Animal Science, Universidade Estadual Paulista, Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
R. A. REIS
Affiliation:
Department of Animal Science, Universidade Estadual Paulista, Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
E. E. DALLANTONIA
Affiliation:
Department of Animal Science, Universidade Estadual Paulista, Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
L. R. SIMONETTI
Affiliation:
Department of Animal Science, Universidade Estadual Paulista, Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
I. P. C. CARVALHO
Affiliation:
Trouw Nutrition, R&D – Boxmeer, Netherlands
A. BERNDT
Affiliation:
Embrapa Pecuária Sudeste, São Carlos, SP, Brazil
M. L. CHIZZOTTI
Affiliation:
Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
R. T. S. FRIGUETTO
Affiliation:
Embrapa Meio Ambiente, Jaguariúna, SP, Brazil
T. T. BERCHIELLI
Affiliation:
Department of Animal Science, Universidade Estadual Paulista, Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
*
*To whom all correspondence should be addressed. Email: josiane.lage@trouwnutrition.com; josilage@gmail.com

Summary

A total of 70 Nellore bulls (18 ± 3 months of age) were used to determine the effects of crude glycerine (CG) replacing starch- v. fibre-based energy ingredients in low (LC; 0·40 concentrate) or high concentrate (HC; 0·60 concentrate) – on a dry matter (DM) basis – on DM intake (DMI), methane emissions and growth. Ten bulls were slaughtered (reference group) to obtain the carcass gain (CrG). The 60 remaining bulls (374 ± 24·5 kg) were allocated to a 2 × 3 factorial arrangement (two concentrate levels, LC or HC; and three feeding regimes, FR). The FR were: CO – without CG and maize as an ingredient of concentrate; CGM – inclusion of CG (0·10 of DM) replacing maize in the concentrate; and CGSH – inclusion of CG (0·10 of DM) replacing soybean hulls (SH) in the concentrate. Bulls fed LC or HC had similar DMI (kg/d) and growth. The DMI and average daily gain (ADG) were similar among FR. Concentrate level and FR tended to interact for methane emissions (g) per kg DMI. Bulls fed CGM had a greater G : F (g CrG/kg DMI) than those fed CO or CGSH diets. Increasing dietary concentrate (0·40–0·60) did not affect intake, methane emissions, or growth. Inclusion of CG in diets to replace SH in LC diets tended to decrease methane emissions from animals. When CG replaces SH in the diets, CrG and G:F (g CrG/kg DMI) are decreased compared with bulls fed CGM.

Type
Animal Review
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abo El-Nor, S., Abughazaleh, A. A., Potu, R. B., Hastings, D. & Khattab, M. S. A. (2010). Effects of differing levels of glycerol on rumen fermentation and bacteria. Animal Feed Science and Technology 162, 99105.CrossRefGoogle Scholar
AOAC (1990). Official Methods of Analysis, 15th edn, Arlington, Virginia, USA: Association of Official Analytical Chemists.Google Scholar
Avila, J. S., Chaves, A. V., Hernandez-Calva, M., Beauchemin, K. A., McGinn, S. M., Wang, Y., Hasrtard, O. M. & McAllister, T. A. (2011). Effects of replacing barley grain in feedlot diets with increasing levels of glycerol on in vitro fermentation and methane production. Animal Feed Science and Technology 166–167, 265268.CrossRefGoogle Scholar
Avila-Stagno, J., Chaves, A. V., He, M. L., Harstad, O. M., Beauchemin, K. A., McGinn, S. M. & McAllister, T. A. (2013). Effects of increasing concentrations of glycerol in concentrate diets on nutrient digestibility, methane emissions, growth, fatty acid profiles and carcass traits of lambs. Journal of Animal Science 91, 829837.Google Scholar
Avila-Stagno, J., Chaves, A. V., Ribeiro Júnior, G. O., Ungerfeld, E. M. & McAllister, T. A. (2014). Inclusion of glycerol in forage diets increases methane production in a rumen simulation technique system. British Journal of Nutrition 111, 829835.CrossRefGoogle Scholar
Bartoň, L., Bureš, D., Homolka, P., Jančík, F., Marounek, M. & Řehák, D. (2013). Effects of long-term feeding of crude glycerin on performance, carcass traits, meat quality, and blood and rumen metabolites of finishing bulls. Livestock Science 155, 5359.Google Scholar
Biebl, H., Menzel, K., Zeng, A. P. & Deckwer, W. D. (1999). Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology 52, 289297.Google Scholar
BRAZIL (1997). Ministério da agricultura, Pecuária e Abastecimento, Regulamento da Inspeção Industrial e Sanitária de Produtos de Origem Animal [Food of Animal Origin Sanitary and Industry Inspection]. Brasília: Ministério da Agricultura, Pecuária e Abastecimento. In Portuguese.Google Scholar
Buckley, B. A., Baker, J. F., Dickerson, G. E. & Jenkins, T. G. (1990). Body composition and tissue distribution from birth to 14 months for three biological types of beef heifers. Journal of Animal Science 68, 3109.Google Scholar
Church, D. C. (1988). The Ruminant Animal: Digestive Physiology and Nutrition. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Cole, N. A. & Hutcheson, D. P. (1981). Influence of beef steers of two sequential short periods of feed and water deprivation. Journal of Animal Science 53, 907915.Google Scholar
Cole, N. A. & Hutcheson, D. P. (1985). Influence of prefast feed intake on recovery from feed and water deprivation by beef steers. Journal of Animal Science 60, 772780.CrossRefGoogle ScholarPubMed
Drouillard, J. S. (2008). Glycerin as a feed for ruminants: using glycerin in high-concentrate diets. Journal of Animal Science 86 (Suppl. 2), 392. (Abstract).Google Scholar
Drouillard, J. S. (2012). Utilization of crude glycerin in beef cattle. In Biofuel Co-products as Livestock Feed – Opportunities and Challenges (Ed. Makkar, H. P. S.), pp. 155161. Rome, Italy: FAO.Google Scholar
Etherton, T. D. (1982). The role of insulin-receptor in interactions in regulation of nutrient utilization by skeletal muscle and adipose tissue; a review. Journal of Animal Science 54, 5867.Google Scholar
Forbes, J. M. (2007). A personal view of how ruminant animals control their intake and choice of food: minimal total discomfort. Nutrition Research Reviews 20, 132146.Google Scholar
Greiner, S. P., Rouse, G. H., Wilson, D. E., Cundiff, L. V. & Wheeler, T. L. (2003). The relationship between ultrasound measurements and carcass fat thickness and longissimus muscle area in beef cattle. Journal of Animal Science 81, 676682.CrossRefGoogle ScholarPubMed
Holtshausen, L., Schwartzkopf-Genswein, K. S. & Beauchemin, K. A. (2013). Ruminal pH profile and feeding behaviour of feedlot cattle transitioning from a high-forage to a high-concentrate diet. Canadian Journal of Animal Science 93, 529533.Google Scholar
Hsu, J. T., Faulkner, D. B., Garleb, K. A., Barclay, R. A., Fahey, G. C. Jr. & Berger, L. L. (1987). Evaluation of corn fiber, cottonseed hulls, oat hulls, and soybean hulls as roughage sources for ruminants. Journal of Animal Science 65, 244255.Google Scholar
Huntington, G. B. (1997). Starch utilization by ruminants: from basics to the bunk. Journal of Animal Science 75, 852867.Google Scholar
Huntington, G. B., Harmon, D. L. & Richards, C. J. (2006). Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. Journal of Animal Science 84 (E-Suppl.), E14E24.CrossRefGoogle ScholarPubMed
Ipharraguerre, I. R. & Clark, J. H. (2003). Soyhulls as an alternative feed for lactating dairy cows: a review. Journal of Dairy Science 86, 10521073.CrossRefGoogle ScholarPubMed
Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science 73, 24832492.CrossRefGoogle ScholarPubMed
Johnson, K. A., Huyler, M., Westburg, H., Lamb, B. & Zimmerman, P. (1994). Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environmental Science & Technology 28, 359362.Google Scholar
Lage, J. F., Paulino, P. V. R., Valadares Filho, S. C., Souza, E. J. O., Duarte, M. S., Benedeti, P. D. B., Souza, N. K. P. & Cox, R. B. (2012). Influence of genetic type and level of concentrate in the finishing diet on carcass and meat quality traits in beef heifers. Meat Science 90, 770774.Google Scholar
Lee, S. Y., Lee, S. M., Cho, Y. B., Kam, D. K., Lee, S. C., Kim, C. H. & Seo, S. (2011). Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production. Animal Feed Science and Technology 166–167, 269274.Google Scholar
Lovett, D. K., Stack, L. J., Lovell, S., Callan, J., Flynn, B., Hawkins, M. & O'Mara, F. P. (2005). Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. Journal of Dairy Science 88, 28362842.Google Scholar
McGeough, E. J., O'Kiely, P., Hart, K. J., Moloney, A. P., Boland, T. M. & Kenny, D. A. (2010). Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content. Journal of Animal Science 88, 27032716.Google Scholar
McLeod, K. R. & Baldwin, R. L. (2000). Effects of diet forage: concentrate ratio and metabolizable energy intake on visceral organ growth and in vitro oxidative capacity of gut tissues in sheep. Journal of Animal Science 78, 760770.Google Scholar
Mertens, D. R. (1997). Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science 80, 14631481.Google Scholar
Mitsumori, M. & Sun, W. (2008). Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Journal of Animal Science 21, 144154.Google Scholar
Moss, A. R., Jouany, J. P. & Newbold, J. (2000). Methane production by ruminants: its contribution to global warming. Annales De Zootechnie 49, 231253.Google Scholar
Mueller, C. J., Blalock, H. M. & Pritchard, R. H. (2011). Use of soybean hulls as a replacement for dry rolled corn in beef cattle feedlot receiving diets. Journal of Animal Science 89, 41424150.Google Scholar
Owens, F. N., Zinn, R. A. & Kim, Y. K. (1986). Limits to starch digestion in the ruminant small intestine. Journal of Animal Science 63, 16341648.Google Scholar
Owens, F. N., Gill, D. R., Secrist, D. S. & Coleman, S. W. (1995). Review of some aspects of growth and development of feedlot cattle. Journal of Animal Science 73, 31523172.Google Scholar
Parsons, G. L., Shelor, M. K. & Drouillard, J. S. (2009). Performance and carcass traits of finishing heifers fed crude glycerin. Journal of Animal Science 87, 653657.Google Scholar
Pina, D. S., Valadares Filho, S. C., Tedeschi, L. O., Barbosa, A. M. & Valadares, R. F. D. (2009). Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers. Journal of Animal Science 87, 10581067.Google Scholar
Pinares-Patiño, C. S., Holmes, C. W., Lassey, K. R. & Ulyatt, M. J. (2008). Measurement of methane emission from sheep by the sulphur hexafluoride tracer technique and by the calorimetric chamber: failure and success. Animal 2, 141148.Google Scholar
Pinares-Patiño, C. S., Lassey, K. R., Martin, R. J., Molano, G., Fernandez, M., Maclean, S., Sandoval, E., Luo, D. & Clark, H. (2011). Assessment of the sulphur hexafluoride (SF6) tracer technique using respiration chambers for estimation of methane emissions from sheep. Animal Feed Science and Technology 166–167, 201209.Google Scholar
Pyatt, N. A., Doane, P. H. & Cecava, M. J. (2007). Effect of crude glycerin in finishing cattle diets. Journal of Animal Science 85 (Suppl.), E409E412.Google Scholar
Quicke, B. V., Bentley, O. G., Scott, H. W., Johnson, R. R. & Moxon, A. L. (1959). Digestibility of soybean hulls and flakes and the in vitro digestibility of cellulose in various milling by-products. Journal of Dairy Science 42, 185186.Google Scholar
Ramos, M. H. & Kerley, M. S. (2012). Effect of dietary crude glycerol level on ruminal fermentation in continuous culture and growth performance of beef calves. Journal of Animal Science 90, 892899.CrossRefGoogle ScholarPubMed
Roger, V., Fonty, G., Andre, C. & Gouet, P. (1992). Effects of glycerol on the growth, adhesion, and cellulolytic activity of rumen cellulolytic bacteria and anaerobic fungi. Current Microbiology 25, 197–196.CrossRefGoogle ScholarPubMed
Schoonmaker, J. P., Cecava, M. J., Faulkner, D. B., Fluharty, F. L., Zerby, H. N. & Loerch, S. C. (2003). Effect of source of energy and rate of growth on performance, carcass characteristics, ruminal fermentation, and serum glucose and insulin of early-weaned steers. Journal of Animal Science 81, 843855.Google Scholar
Schroder, A. & Sudekum, K. H. (1999). Glycerol as a by-product of biodiesel production in diets of ruminants. In 10th International Rapeseed Congress (Eds Wratten, N. & Salisbury, P. W.), article number 241. Canberra, Australia, The Regional Institute. Available from: http://www.regional.org.au/au/gcirc/1/241.htm#TopOfPage (verified 18 February 2016).Google Scholar
Sharman, E. D., Lancaster, P. A., Krehbiel, C. R., Hilton, G. G., Stein, D. R., Desilva, U. & Horn, G. W. (2013). Effects of starch- vs. fiber-based energy supplements during winter grazing on partitioning of fat among depots and adipose tissue gene expression in growing cattle and final carcass characteristics. Journal of Animal Science 93, 22642277.CrossRefGoogle Scholar
Smith, S. B. & Crouse, J. D. (1984). Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. Journal of Nutrition 114, 792800.Google Scholar
Smith, S. B., Kawachi, H., Choi, C. B., Choi, C. W., Wu, G. & Sawyer, J. E. (2009). Cellular regulation of bovine intramuscular adipose tissue development and composition. Journal of Animal Science 8, 7282.Google Scholar
Storm, I. M. L., Hellwing, A. L. F., Nielsen, N. I. & Madsen, J. (2012). Methods for measuring and estimating methane emission from ruminants. Animal 2, 160183.Google Scholar
Valadares Filho, S. C., Paulino, P. V. R. & Magalhães, K. A. (2006). Exigências nutricionais de zebuínos e tabelas de composição de alimentos – BR CORTE. 1st edn, Viçosa, Brazil: UFV, Suprema Gráfica Ltda.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, and nonstarch polyssacarides in relations to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Wang, C., Lui, Q., Huo, W. J., Yang, W. Z., Dong, K. H., Huang, X. Y. & Guo, G. (2009). Effects of feeding glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science 121, 1520.CrossRefGoogle Scholar
Westberg, H. H., Johnson, K. A., Cossalman, M. W. & Michal, J. J. (1998). A SF6 Tracer Technique: Methane Measurement from Ruminants, 2nd edn, Pullman, Washington, USA: Washington State University.Google Scholar
Yan, T., Agnew, R. E., Gordon, F. J. & Porter, M. G. (2000). Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science 64, 253263.Google Scholar
Zhang, A. & Yang, S. T. (2009). Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici . Process Biochemistry 44, 13461351.CrossRefGoogle Scholar