Published online by Cambridge University Press: 14 July 2016
Let W be the usual almost-sure limit random variable in a supercritical simple branching process; we study its tail behaviour. For the left tail, we distinguish two cases, the ‘Schröder' and ‘Böttcher' cases; both appear in work of Harris and Dubuc. The Schröder case is related to work of Karlin and McGregor on embeddability in continuous-time (Markov) branching processes. New results are obtained for the Böttcher case; there are links with recent work of Barlow and Perkins on Brownian motion on a fractal. The right tail is also considered. Use is made of recent progress in Tauberian theory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.