Published online by Cambridge University Press: 14 July 2016
Let Y1, Y2, · ·· be a stochastic process and M a positive real number. Define TM = inf{n | Yn > M} (TM = + ∞ if for n = 1, 2, ···)· We are interested in the probabilities P(TM <∞) and in particular in the case when these tend to zero exponentially fast when M tends to infinity. The techniques of large deviations theory are used to obtain conditions for this and to find out the rate of convergence. The main hypotheses required are given in terms of the generating functions associated with the process (Yn).
The main part of this paper was written during a research project in the Rolf Nevanlinna Institute with the support of the Foundation for the Promotion of the Actuarial Profession.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.