Published online by Cambridge University Press: 14 July 2016
Product-form equilibrium distributions in networks of queues in which customers move singly have been known since 1957, when Jackson derived some surprising independence results. A product-form equilibrium distribution has also recently been shown to be valid for certain queueing networks with batch arrivals, batch services and even correlated routing.
This paper derives the joint equilibrium distribution of states immediately before and after a batch of customers is released into the network. The results are valid for either discrete- or continuous-time queueing networks: previously obtained results can be seen as marginal distributions within a more general framework. A generalisation of the classical ‘arrival theorem' for continuous-time networks is given, which compares the equilibrium distribution as seen by arrivals to the time-averaged equilibrium distribution.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.