Published online by Cambridge University Press: 14 July 2016
Semi-Markov games are investigated under discounted and limiting average payoff criteria. The issue of the existence of the value and a pair of stationary optimal strategies are settled; the optimality equation is studied and under a natural ergodic condition the existence of a solution to the optimality equation is proved for the limiting average case. Semi-Markov games provide useful flexibility in constructing recursive game models. All the work on Markov/semi-Markov decision processes and Markov (stochastic) games can be viewed as special cases of the developments in this paper.
Supported by a research grant from the University Grants Commission, India.
Supported by a research grant from the National Board of Higher Mathematics, Tata Institute of Fundamental Research, India.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.