Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-18T03:50:41.923Z Has data issue: false hasContentIssue false

Duality theory for exponential utility-based hedging in the Almgren–Chriss model

Published online by Cambridge University Press:  03 August 2023

Yan Dolinsky*
Affiliation:
Hebrew University
*
*Postal address: Department of Statistics, Hebrew University, Jerusalem, Israel. Email address: yan.dolinsky@mail.huji.ac.il

Abstract

In this paper we obtain a duality result for the exponential utility maximization problem where trading is subject to quadratic transaction costs and the investor is required to liquidate her position at the maturity date. As an application of the duality, we treat utility-based hedging in the Bachelier model. For European contingent claims with a quadratic payoff, we compute the optimal trading strategy explicitly.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almgren, R. and Chriss, N. (2001). Optimal execution of portfolio transactions. J. Risk 3, 539.CrossRefGoogle Scholar
Bank, P. and Voß, M. (2019). Optimal investment with transient price impact. SIAM J. Financial Math. 10, 723768.CrossRefGoogle Scholar
Bank, P., Dolinsky, Y. and Rásonyi, M. (2022). What if we knew what the future brings? Optimal investment for a frontrunner with price impact. Appl. Math. Optimization 86, 25.CrossRefGoogle Scholar
Bayrakatar, E. and Ludkovski, M. (2014). Liquidation in limit order books with controlled intensity. Math. Finance 24, 627650.CrossRefGoogle Scholar
Black, F. (1986). Noise. J. Finance 41, 529543.CrossRefGoogle Scholar
Delbaen, F. and Schachermayer, W. (1999). A compactness principle for bounded sequences of martingales with applications. In Proceedings of the Seminar of Stochastic Analysis, Random Fields and Applications (Progress in Probability 45), pp. 137–173. Birkhäuser.CrossRefGoogle Scholar
Delbaen, F., Grandits, P., Rheinländer, T., Samperi, D., Schweizer, M. and Stricker, C. (2002). Exponential hedging and entropic penalties. Math. Finance 12, 99123.CrossRefGoogle Scholar
Dolinskyi, L. and Dolinsky, Y. (2023). Optimal liquidation with high risk aversion in the Almgren–Chriss model: a case study. Available at arXiv:2301.01555.Google Scholar
Ekren, I. and Nadtochiy, S. (2022). Utility-based pricing and hedging of contingent claims in Almgren–Chriss model with temporary price impact. Math. Finance 32, 172225.CrossRefGoogle Scholar
Fritelli, M. (2000). The minimal entropy martingale measure and the valuation problem in incomplete markets. Math. Finance 10, 3952.CrossRefGoogle Scholar
Fruth, A., Schöneborn, T. and Urusov, M. (2019). Optimal trade execution in order books with stochastic liquidity. Math. Finance 29, 507541.CrossRefGoogle Scholar
Gatheral, J. and Schied, A. (2011). Optimal trade execution under geometric Brownian motion in the Almgren and Chriss framework. Internat. J. Theoret. Appl. Finance 14, 353368.CrossRefGoogle Scholar
Gelfand, I. M. and Fomin, S. V. (1963). Calculus of Variations. Prentice Hall.Google Scholar
Guasoni, P. and Rásonyi, M. (2015). Hedging, arbitrage and optimality with superlinear frictions. Ann. Appl. Prob. 25, 20662095.CrossRefGoogle Scholar
Schied, A., Schöneborn, T. and Tehranchi, M. (2009). Optimal basket liquidation for CARA investors is deterministic. Appl. Math. Finance 17, 471489.CrossRefGoogle Scholar
Sion, M. (1958). On general minimax theorems. Pacific J. Math. 8, 171176.CrossRefGoogle Scholar