Published online by Cambridge University Press: 14 July 2016
In the spirit of Albrecher and Hipp (2007), and Albrecher, Renaud, and Zhou (2008) we consider a Lévy insurance risk model with tax payments of a more general structure than in the aforementioned papers, which was also considered in Albrecher, Borst, Boxma, and Resing (2009). In terms of scale functions, we establish three fundamental identities of interest which have stimulated a large volume of actuarial research in recent years. That is to say, the two-sided exit problem, the net present value of tax paid until ruin, as well as a generalized version of the Gerber–Shiu function. The method we appeal to differs from Albrecher and Hipp (2007), and Albrecher, Renaud, and Zhou (2008) in that we appeal predominantly to excursion theory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.