Published online by Cambridge University Press: 04 April 2017
We establish a local martingale M associate with f(X,Y) under some restrictions on f, where Y is a process of bounded variation (on compact intervals) and either X is a jump diffusion (a special case being a Lévy process) or X is some general (càdlàg metric-space valued) Markov process. In the latter case, f is restricted to the form f(x,y)=∑k=1Kξk(x)ηk(y). This local martingale unifies both Dynkin's formula for Markov processes and the Lebesgue–Stieltjes integration (change of variable) formula for (right-continuous) functions of bounded variation. For the jump diffusion case, when further relatively easily verifiable conditions are assumed, then this local martingale becomes an L2-martingale. Convergence of the product of this Martingale with some deterministic function ( of time ) to 0 both in L2 and almost sure is also considered and sufficient conditions for functions for which this happens are identified.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.