Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T01:14:54.787Z Has data issue: false hasContentIssue false

277. Vitamin A and C in cow's milk, with a note on the synthesis of vitamin C in bovines

Published online by Cambridge University Press:  01 June 2009

S. N. Ray
Affiliation:
Imperial Veterinary Research Institute, Muktesar, India
Karam Chand
Affiliation:
Imperial Veterinary Research Institute, Muktesar, India
K. Govind Rau
Affiliation:
Imperial Veterinary Research Institute, Muktesar, India

Extract

1. A simple method is described for the determination of carotene and vitamin A in milk. Figures for the carotene content of milk were higher and those for vitamin A were lower than similar figures reported by Western workers.

2. Figures for vitamin C in milk are similar to corresponding figures of English and American workers. Previous low values for vitamin C, reported by Indian workers, are due to destruction of the vitamin by light.

3. The vitamin C concentration of milk is not subject to great individual variation, probably because cows cannot excrete in milk any vitamin C taken in with the food and because vitamin C of milk is produced by synthesis within the mammary glands from some simple blood constituents.

4. To test the ability of bovines to synthesize vitamin C, young calves were kept for long periods on a strictly vitamin C-free diet. The concentration of vitamin in the blood and other tissues of these animals remained, however, at a normal level. Calves appear therefore to be able to synthesize sufficient vitamin C for their normal growth and activity.

5. Unsuccessful attempts were made to produce vitamin C in vitro by growing bacteria isolated from various parts of the alimentary canal on media prepared from ingesta taken from the regions from which they were isolated.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)De, N. K. (1937). Ind. J. med. Res. 24, 737.Google Scholar
(2)Grewal, K. S. & Kochhar, B. D. (1938). Ind. J. med. Res. 25, 623.Google Scholar
(3)Ranganathan, S. (1937). Ind. J. med. Res. 23, 239.Google Scholar
(4)Chakravarty, R. K. (1939). Ind. J. med. Res. 23, 347.Google Scholar
(5)Harris, L. J. & Ray, S. N. (1935). Lancet, no. 228, p. 71.Google Scholar
(6)Bartlett, S., Cotton, A. G., Henry, K. M. & Kon, S. K. (1938). J. Dairy Res. 9, 273.CrossRefGoogle Scholar
(7)Kon, S. K. & Watson, M. B. (1936). Biochem. J. 30, 2273.CrossRefGoogle Scholar
(8)Ferguson, W. S. & Bishop, G. (1936). Analyst, 61, 515.CrossRefGoogle Scholar
(9)Olson, E. R., Hegsted, D. M. & Peterson, W. H. (1939). J. Dairy Sci. 22, 63.CrossRefGoogle Scholar
(10)Moore, T. (1930). Biochem. J. 25, 692.CrossRefGoogle Scholar
(11)Booth, R. G., Kon, S. K., Dann, W. J. & Moore, T. (1933). Biochem. J. 27, 1189.CrossRefGoogle Scholar
(12)Henry, K. M., Houston, J. & Kon, S. K. (1940). J. Dairy Res. 11, 1.CrossRefGoogle Scholar
(13)Birch, T. W., Harris, L. J. & Ray, S. N. (1933). Biochem. J. 27, 590.Google Scholar
(14)Whitnah, C. H. & Riddell, W. H. (1937). J. Dairy Sci. 20, 8.CrossRefGoogle Scholar
(15)Parsons, H. T. (1920). J. biol. Chem. 44, 587.CrossRefGoogle Scholar
(16)Parsons, H. T. & Hutton, M. K. (1924). J. biol. Chem. 59, 97.CrossRefGoogle Scholar
(17)Lepkovsky, S. & Nelson, M. T. (1924). J. biol. Chem. 66, 49.CrossRefGoogle Scholar
(18)Harris, L. J. & Innes, J. R. M. (1931). Quoted by Innes, Ann. Rep. Director Inst. Anim. Path. Cambridge, p. 149.Google Scholar
(19)Orr, J. B. & Crichton, A. (1924). J. agric. Sci. 14, 114.CrossRefGoogle Scholar
(20)Hart, E. B., Steenbock, H. & Lepkovsky, S. (1925). J. biol. Chem. 66, 813.CrossRefGoogle Scholar
(21)Madsen, L. L., McCay, C. M. & Maynard, L. A. (1935). Mem. Cornell agric. Exp. Sta. no. 178.Google Scholar
(22a)Thurston, L. M., Eckles, C. H. & Palmer, L. S. (1926). J. Dairy Sci. 9, 37.CrossRefGoogle Scholar
(22b)Thurston, L. M., Palmer, L. S. & Eckles, C. H. (1929). J. Dairy Sci. 12, 394.CrossRefGoogle Scholar
(23)Weiss, S. (1936). Proc. Soc. Exp. Biol, N.Y., 35, 388.CrossRefGoogle Scholar
(24)Bougart, Quoted By Hutyra, F., Marek, J. & Manninger R. (1938). Special Pathology and Therapeutics of the Diseases of Domestic Animals, 3, 184.Google Scholar
(25)Hjarre, A. & Lilleengen, K. (1936). Virchows Arch. 297, 565.CrossRefGoogle Scholar
(26)Macgregor, A. D. (1935). Non-sweating, Heat-stroke and Kumri and their Interrelationship in Horses in India, p. 53. (Publication of Bengal Veterinary College.)Google Scholar
(27)Ray, S. N. (1934). Biochem. J. 28, 996.CrossRefGoogle Scholar
(28)Dukes, H. H. (1935). The Physiology of Domestic Animals, p. 264.Google Scholar
(29)Giri, K. V. (1937). Ind. J. med. Res. 25, 443.Google Scholar
(30)Bessey, O. A. & King, C. G. (1933). J. biol. Chem. 103, 687.CrossRefGoogle Scholar
(31)Harris, L. J. & Ray, S. N. (1932). Biochem. J. 26, 1057.CrossRefGoogle Scholar
(32)Svirbely, J. L. (1933). Biochem. J. 27, 960.CrossRefGoogle Scholar
(33)Guha, B. C. & Ghosh, A. R. (1934). Nature, Lond., 134, 739.CrossRefGoogle Scholar
(34)Rudra, M. N. (1939). Nature, Lond., 143, 811.CrossRefGoogle Scholar