Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T16:15:19.489Z Has data issue: false hasContentIssue false

Effect of polyphosphate binding on the chain dynamic of caseins: investigation by differential scanning calorimetry and thermally stimulated currents

Published online by Cambridge University Press:  01 June 2009

Alain Lamure
Affiliation:
Laboratoire de Physique des Solides (UA au CNRS 74)
Jean-François Pommert
Affiliation:
Groupe de Chimie Organique Biologique (UA au CNRS 454 et 470), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France
Alain Klaebe
Affiliation:
Groupe de Chimie Organique Biologique (UA au CNRS 454 et 470), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France
Colette Lacabanne
Affiliation:
Laboratoire de Physique des Solides (UA au CNRS 74)
Jean-Jacques Perie
Affiliation:
Groupe de Chimie Organique Biologique (UA au CNRS 454 et 470), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France

Summary

Samples of caseins having different Ca contents as used in cheese processing were analysed by techniques using differential scanning calorimetry and thermally stimulated currents (TSC) before and after treatment with Na poly-phosphate, a food additive used in the manufacture of processed cheese. These techniques revealed structural changes induced by the salt, and the different types of water molecules associated with the protein are evident. This characterization is in agreement with results obtained by other techniques, particularly X-ray diffraction of proteins. Transmission electron microscopy of the same samples confirmed that the changes observed by TSC were associated with an unravelling of the protein.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blake, C. C. F., Pulford, W. C. A. & Artymiuk, P. J. 1983 X-Ray studies of water in crystals in lysozyme. Journal of Molecular Biology 167 693723CrossRefGoogle ScholarPubMed
Falk, M. 1905 Hydration of purines, pyrimidines, nucleosides, and nucleotides. Canadian Journal of Chemistry 43 314318CrossRefGoogle Scholar
Hitmi, N., Lamure-Plaino, E., Lamure, A., Lacabanne, C. & Young, R. A. 1986 Reorientable electric dipoles and cooperative phenomena in human tooth enamel. Calcified Tissue International 38 252261CrossRefGoogle ScholarPubMed
Jacobson, B. 1955 On the interpretation of dielectric constants of aqueous macromolecular solutions. Hydration of macromolecules. Journal of the American Chemical Society 77 29192926CrossRefGoogle Scholar
Lamure, A., Hitmi, N., Harmand, M. F., Maurel, E. & Pieraggi, M. Th. 1983 [Study of molecular movements in connective tissues by thermostimulation techniques.] Innovations Technologiques en Biologie et Médecine 4 308Google Scholar
Lamure, A., Hitmi, N., Harmand, M. F., Maurel, E. & Lacabanne, C. 1985 [Study of molecular motion in collagen and proteoglycans by dielectric and mechanical spectroscopy.] Bulletin de la Société Chimique de France (4) 532534Google Scholar
Matheis, G. & Whitaker, J. R. 1984 Chemical phosphorylation of food proteins: an overview and a prospectus. Journal of Agricultural and Food Chemistry 32 699705CrossRefGoogle Scholar
Nemethy, G. 1967 Hydrophobic interactions. Angewandte Chemie, International Edition 6 195206CrossRefGoogle ScholarPubMed
Shimp, L. A. 1985 Process cheese principles. Food Technology 39 (5) 6364, 66, 68, 70Google Scholar
South, G. P. & Grant, E. H. 1972 Dielectric dispersion and dipole moment of myoglobine, in water. Proceedings of the Royal Society of London, Series A 328 371387Google Scholar
Wendlandt, W. W. 1974 Thermal Methods of Analysis. London, J. Wiley Interscience.Google Scholar