Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T11:46:47.794Z Has data issue: false hasContentIssue false

Effects of dilution, freezing and thawing and drying on the dispersibility of isolated fat globule membrane

Published online by Cambridge University Press:  01 June 2009

H. C. Chien
Affiliation:
Department of Dairy and Food Industries, University of Wisconsin, Madison, Wisconsin, U.S.A.
T. Richardson
Affiliation:
Department of Dairy and Food Industries, University of Wisconsin, Madison, Wisconsin, U.S.A.
C. H. Amundson
Affiliation:
Department of Dairy and Food Industries, University of Wisconsin, Madison, Wisconsin, U.S.A.

Summary

The effects of dilution, freezing and thawing, and drying on the dispersibility of fat-globule membrane (FGM) preparations were studied. Dilution of FGM favoured aggregation of the lipoprotein particles. Freezing and thawing of FGM had a similar effect. Drying FGM by roller-drying markedly decreased its dispersibility. Drying by low-temperature vacuum-drying only slightly increased the dispersibility of FGM, while freeze-drying and spray-drying gave larger increases in the dispersibility.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blaauw, J. (1960). Misset's Zuivel, 66, 1123; Off. Org. K. ned. Zuivelb. 52, 1084 (Dairy Sci. Abstr. 24, [52]).Google Scholar
Berlin, E., Howard, N. M. & Pallansch, M. J. (1964). J. Dairy Sci. 47, 132.Google Scholar
Brunner, J. R., Duncan, C. W. & Trout, G. M. (1953). Fd Res. 18, 454.Google Scholar
Bullock, D. H. (1958). Ph.D. Thesis, University of Wisconsin.Google Scholar
Calapaj, G. G. (1962). Boll. Ist. sieroter. milan. 41, 512 (Dairy Sci. Abstr. 26, [249]).Google Scholar
Cole, L. J. N., Kloepfel, D. & Lusena, C. V. (1959). Can. J. Biochem. Physiol. 37, 821.CrossRefGoogle Scholar
Greenbank, G. R. & Pallansch, M. J. (1962). 16th Int. Dairy Congr. B, 1002.Google Scholar
Hostettler, H. & Imhoff, K. (1953 a). 13th Int. Dairy Congr. 2, 382.Google Scholar
Hostettler, H. & Imhoff, K. (1953 b). 13th Int. Dairy Congr. 2, 423.Google Scholar
Jenness, R. & Patton, S. (1959). Principles of Dairy Chemistry, pp. 270272. New York: John Wiley.Google Scholar
Kielsmeier, E. W. (1956). Ph.D. Thesis, University of Wisconsin.Google Scholar
King, N. (1955 a). J. Dairy Res. 22, 205.CrossRefGoogle Scholar
King, N. (1955 b). The Milk Fat Globule Membrane and Some Associated Phenomena. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
King, N. (1965). Dairy Sci. Abstr. 27, 91.Google Scholar
Lampitt, L. D. & Bushill, J. H. (1931). J. Soc. chem. Ind., Lond., 50, 45T.Google Scholar
Litman, I.I. & Ashworth, U. S. (1957). J. Dairy Sci. 40, 403.CrossRefGoogle Scholar
Nickerson, T. A., Coulter, S. T. & Jenness, R. (1952). J. Dairy Sci. 35, 77.Google Scholar
Reinke, E., Brunner, J. R. & Trout, G. M. (1960). Milk Prod. J. 51 (9), 6.Google Scholar
Tamsma, A., Edmondson, L. F. & Vettel, H. E. (1959). J. Dairy Sci. 42, 240.Google Scholar