Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T05:48:08.507Z Has data issue: false hasContentIssue false

Proline-specific peptidases of Streptococcus cremoris AM2

Published online by Cambridge University Press:  01 June 2009

Mary Booth
Affiliation:
Department of Biochemistry, University College, Galway, Ireland
William J. Donnelly
Affiliation:
The National Dairy Product Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
Ide Ni Fhaoláin
Affiliation:
Department of Life Sciences, Regional Technical College, Galway, Ireland
P. Vincent Jennings
Affiliation:
Department of Life Sciences, Regional Technical College, Galway, Ireland
Gerard O'Cuinn
Affiliation:
Department of Life Sciences, Regional Technical College, Galway, Ireland

Summary

The present study identifies proline-specific peptidases found in Streptococcus cremoris AM2. These activities were present prcdominantly in the cytoplasmic fraction of the cells with minor amounts in cell membrane fraction. No evidence vvas found for such activities in either the extracellular fluid used to grow the cells, in the wash fraction or in the cell wall fraction. The involvement of these enzymes in release of free proline from proline-containing peptides is considered.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrams, A. 1965 The release of bound adenosine triphosphatase from isolated bacterial membranes and the properties of the solubilised enzymes. Journal of Biological Chemistry 240 36753681CrossRefGoogle Scholar
Aidoo, K. K., Hendry, K. & Wood, B. J. B. 1981 Estimation of fungal growth in a solid state fermentation System. European Journal of Applied Microbiology ami Biotechnology 12 69CrossRefGoogle Scholar
Biede, S. L. & Hammond, E. G. 1979 Swiss cheese flavor, 1. Chemical analysis. Journal of Dairy Science 62 227237CrossRefGoogle Scholar
Booth, M., Donnelly, W. J., Ni Fhaolain, I., Jennings, P. V. & O'Cuinn, G. 1989 Preparation of subcellular fractions from strains of Streptococcus cremoris. Biochemical Society Transactions 17 385386CrossRefGoogle Scholar
Browne, P. & O'Cuinn, G. 1983 The purification and characterization of a proline dipeptidase from guinea pig brain. Journal of Biological Chemistry 258 61476154.Google Scholar
Casey, M. G. & Meyer, J. 1985 Presence of X-prolyl-dipeptidyl peptidase in lactic acid bacteria. Journal of Dairy Science 68, 32123215Google Scholar
Cliffe, A. J. & Law, B. A. 1985 Discontinuous polyacrylamide gel electrophoresis of cell wall proteinase from variants of Streptococcus lactis. Journal of Applied Bacteriology 58 245250Google Scholar
Exterkate, F. A. 1984 Location of peptidases outside and inside the membrane of Streptococcus cremoris. Applied and Enrironmental Microbiology 47 177183CrossRefGoogle ScholarPubMed
Geis, A., Bockelmann, W. & Teuber, M. 1985 Simultaneous extraction and purification of a cell wall-associated peptidase and β-casein specific protease from Streptococcus cremoris ACI. Applied Microbiology and Biotechnology 23 7984CrossRefGoogle Scholar
Gordon, D. F. & Speck, M. L. 1965 Bitter peptide isolated from milk cultures of Streptococcus cremoris. Applied Microbiology 13 537542Google Scholar
Hickey, M. W., Hillier, A. J. & Jago, G. R. 1983 Peptidase activities in lactobacilli. Australian Journal of Dairy Technology 38 118123Google Scholar
Kato, T., Nagatsu, T., Kimura, T. & Sakakibara, B. 1978 Fluorescence assay of X-prolyl dipeptidyl- aminopeptidase activity with a new fluorogenic substrate. Biochemical Medicine 19 351359Google Scholar
Kaminogawa, S., Azuma, N., Hwang, I-K., Suzuki, Y. & Yamauchi, K. 1984 Isolation and characterisation of a prolidase from Streptococcus cremoris H61. Agricultural and Biological Chemistry 48 30353040Google Scholar
King, E. J. 1932 The colorimetric determination of phosphorus. Biochemical Journal 26 292297Google Scholar
Kolstad, J. & Law, B. A. 1985 Comparative peptide specificity of cell wall, membrane and intracellular peptidases of group NT streptococci. Journal of Applied Bacteriology 58 449456CrossRefGoogle Scholar
Kruse, H. & Hurst, A. 1972 Preparation of spheroplasts from Streptococcus lactis. Canadian Journal of Microbiology 18 825831CrossRefGoogle ScholarPubMed
McDonald, J. K., Zeitmann, B. B., Reilly, T. J. & Ellis, S. 1969 New observations on the substrate specificity of Cathepsin C (dipeptidyl aminopeptidase I). Including the degradation of β-corticotropin and other peptide hormones. Journal of Biological Chemistry 244 26932709CrossRefGoogle ScholarPubMed
Meyer, J. & Jordi, R. 1987 Purification and characterization of X-prolyl dipeptidylaminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus. Journal of Dairy Science 70 738745Google Scholar
Mills, O. E. & Thomas, T. D. 1981 Nitrogen sources for growth of lactic streptococci in milk. New Zealand Journal of Dairy Science and Technology 15 4355Google Scholar
Mou, L., Sullivan, J. J. & Jago, G. R. 1975 Peptidase activities in Group N streptococci. Journal of Dairy Research 42 147155CrossRefGoogle Scholar
Nicholson, J. A. & Peters, T. J. 1978 Fluorometric assay for intestinal peptidases. Analytical Biochemistry 87 418424Google Scholar
Ruettimann, K. W. & Ladisch, M. R. 1987 Casein micelles: structure, properties and enzymatic coagulation. Enzyme Microbiology and Technology 9 578589CrossRefGoogle Scholar
Rondle, C. J. M. & Morgan, W. T. J. 1955 The determination of glucosamine and galactosamine. Biochemical Journal 61 586589Google Scholar
Sullivan, J. J., Mou, L., Roon, J. I. & Jago, G. R. 1973 The enzymic degradation of bitter peptides by starter streptococci. Australian Journal of Dairy Technology 28 2026Google Scholar
Sullivan, J. J. & Jago, G. R. 1972 The structure of bitter peptides and their formation from casein. Australian Journal of Dairy Technology 27 98104Google Scholar
Thomas, T. D. & Mills, O. E. 1981 Proteolytic enzymes of starter bacteria. Netherlands Milk and Dairy Journal 35 255273Google Scholar
Thomas, T. D. & Pritchard, G. G. 1987 Proteolytic enzymes of dairy starter cultures. FEMS Microbiological Reviews 46 245268CrossRefGoogle Scholar
Thomas, T. D. & Turner, K. W. 1977 Preparation of skim milk to allow harvesting of starter cells from milk cultures. New Zealand Journal of Dairy Science and Technology 12 1521Google Scholar
Walter, R., Simmons, W. H. & Yoshimoto, T. 1980 Proline specific endo- and exopeptidases. Molecular and Cellular Biochemistry 30 111127Google Scholar
Wittenberger, C. L. & Angelo, N. 1970 Purification and properties of a fructose-1–6-diphosphate- activated lactate dehydrogenase from Streptococcus faecalis. Journal of Bacteriology 101 717724Google Scholar
Yoshimoto, T., Ogita, K., Walter, R., Koida, M. & Tsuru, D. 1979 Post-proline cleaving enzyme. Synthesis of a new fluorogenic substrate and distribution of the endopeptidase in rat tissue and fluids of man. Biochimica et Biophysica Acta 569 184192Google Scholar