Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T12:08:14.976Z Has data issue: false hasContentIssue false

Serological and fluorescence studies of the heat stability of bovine lactoferrin

Published online by Cambridge University Press:  01 June 2009

Augustin Baer
Affiliation:
Federal Dairy Research Institute, CH-3097 Liebefeld (Bern), Switzerland
Marko Oroz
Affiliation:
Federal Dairy Research Institute, CH-3097 Liebefeld (Bern), Switzerland
Bernard Blanc
Affiliation:
Federal Dairy Research Institute, CH-3097 Liebefeld (Bern), Switzerland

Summary

The heat denaturation of Fe-saturated lactoferrin (If) and Fe-free lactoferrin (apo-lf) was studied using the methods of micro-complement fixation and fluorescence. It was established that the change in conformation of apo-lf, induced by iron binding, conferred a higher heat stability to the molecule: the changes were observed at temperatures above 40 °C for apo-lf and above 60 °C for If. The Fe-binding ability of the protein was partially independent of the degree of denaturation. Fluorescence analyses indicated that tryptophan residues were probably not directly involved in the metal binding. There was no evidence of antibodies interfering with the binding sites.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baer, A., Oroz, M. & Blanc, B. (1976a). Milchwissenschaft 31, 649.Google Scholar
Baer, A., Oroz, M. & Blanc, B. (1976b). Journal of Dairy Research 43, 419.CrossRefGoogle Scholar
Bates, G. W. & Wernicke, J. (1971). Journal of Biological Chemistry 246, 3679.CrossRefGoogle Scholar
Bishop, J. G., Schanbacher, F. L., Ferguson, L. C. & Smith, K. L. (1976). Infection and Immunity 14, 911.CrossRefGoogle Scholar
Blanc, B. & Isliker, H. S. (1961). Helvetica Physiologica Acta 19, C 13.Google Scholar
Brown, E. M. & Parry, B. M. Jr (1974). Biochemistry 13, 4560.CrossRefGoogle Scholar
Groves, M. L. (1960). Journal of the American Chemical Society 82, 3345.Google Scholar
Law, B. A. & Reiter, B. (1977). Journal of Dairy Research 44, 595.CrossRefGoogle Scholar
Lehree, S. S. & Fasman, G. D. (1967). Journal of Biological Chemistry 242, 4644.CrossRefGoogle Scholar
Levine, L. (1967). In Handbook of Experimental Immunology, p. 707. (Ed. Weir, D. M..) Oxford: Blackwell Scientific Publications.Google Scholar
Masson, P. L., Hebemans, J. F. & Dive, C. (1966). Clinica Chimica Acta 14, 735.CrossRefGoogle Scholar
Montreuil, J. & Mullet, S. (1960). Comptes Rendus de l'Académie des Sciences 250, 1736.Google Scholar
Parry, R. M. Jr & Brown, E. M. (1974). In Advances in Experimental Medicine and Biology: Protein-Metal Interactions, p. 141. (Ed. Friedman, M..) New York, N.Y.: Plenum Press.CrossRefGoogle Scholar
Rüegg, M., Moor, U. & Blanc, B. (1977). Journal of Dairy Research 44, 509.CrossRefGoogle Scholar
Stelos, P. (1967). In Handbook of Experimental Immunology, p. 3. (Ed. Weir, D. M..) Oxford: Blackwell Scientific Publications.Google Scholar
Weiner, R. E. & Szuchet, S. (1975). Biochimica et Biophysica Acta 393, 143.CrossRefGoogle Scholar