Hostname: page-component-599cfd5f84-z6fpd Total loading time: 0 Render date: 2025-01-07T06:53:13.715Z Has data issue: false hasContentIssue false

Synthesis of milk fat from β-hydroxybutyrate and acetate in lactating goats

Published online by Cambridge University Press:  01 June 2009

G. H. Smith
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds, LS5 3HL
S. McCarthy
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds, LS5 3HL
J. A. F. Rook
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds, LS5 3HL

Summary

The relative importance of β-hydroxybutyric acid (BHBA) and acetate as precursors for milk-fat synthesis was studied in lactating goats by infusing separately tracer quantities of [3−14C]DL-BHBA and [1−14C]acetate into the jugular vein, and [1−14C]butyrate into the portal vein. The concentrations and specific radioactivities of blood plasma constituents, the yields and specific radioactivities of individual milk fatty acids and the relative radioactivities of individual carbon atoms of milk fatty acids were determined.

The infusion of [1−14C]butyrate resulted in the appearance of labelled BHBA in the blood plasma which behaved almost identically with infused [14C]BHBA as a precursor for milk fatty acids.

The relative radioactivity of carbon atoms of the fatty acids of milk fat following the infusions provided direct evidence that BHBA had provided an intact 4-carbon unit at the methyl end of each fatty-acid chain. Acetate provided 2-carbon units both for the elongation of the 4-carbon units and for complete de novo synthesis. BHBA also provided 2-carbon units which behaved in a similar fashion to those from acetate.

Acetate and BHBA together accounted for all of the C4–C12 acids of milk fat, about 75% of the C14, 45% of the C16 and 10% of the C18.

The total contributions of the various precursors to the fatty acids of milk fat were: acetate 42%, BHBA 9·4% and other plasma precursors (by difference) 48·6%.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annison, E. F. & Linzell, J. L. (1964). Journal of Physiology 175, 372.CrossRefGoogle Scholar
Annison, E. F., Linzell, J. L., Fazakerley, S. & Nichols, B. W. (1967). Biochemical Journal 102, 637.CrossRefGoogle Scholar
Baillie, L. A. (1960). International Journal of Applied Radiation and Isotopes 8, 1.CrossRefGoogle Scholar
Barry, J. M., Bartley, W., Linzell, J. L. & Robinson, D. S. (1963). Biochemical Journal 89, 6.CrossRefGoogle Scholar
Bickerstaffe, R. (1971). In Lactation: Proceedings of the 17th Easter School in Agricultural Science, University of Nottingham, 1970, p. 317. (Ed. Falconer, I. R..) London: Butterworth.Google Scholar
Bishop, C., Davies, T., Glascock, R. F. & Welch, V. A. (1969). Biochemical Journal 113, 629.CrossRefGoogle Scholar
Brady, R. O., Bradley, R. M. & Trams, E. G. (1960). Journal of Biological Chemistry 235, 3093.CrossRefGoogle Scholar
deMan, J. M. (1964). Journal of Dairy Science 47, 546.CrossRefGoogle Scholar
Kleiber, M. (1954), Revue Canadienne de Biologie 13, 333.Google Scholar
Krainick, H. G. & Müller, F. (1941). Mikrochemie vereinigt mit Mikrochemica Acta 30, 7.CrossRefGoogle Scholar
Kumar, S., Lakshmanan, S. & Shaw, J. C. (1959). Journal of Biological Chemistry 234, 754.CrossRefGoogle Scholar
Leng, R. A. & Annison, E. F. (1963). Biochemical Journal 86, 319.CrossRefGoogle Scholar
Linzell, J. L., Annison, E. F., Fazakerley, S. & Leng, R. A. (1967). Biochemical Journal 104, 34.CrossRefGoogle Scholar
Luick, J. R. & Kameoka, K. K. (1966). Journal of Dairy Science 49, 98.CrossRefGoogle Scholar
McCarthy, S. & Smith, G. H. (1972). Biochimica et Biophysica Acta 260, 185.CrossRefGoogle Scholar
Moore, J. H. (1962). Journal of Dairy Research 29, 141.CrossRefGoogle Scholar
Nandedkar, A. K. N., Schirmer, E. W., Pynadath, T. I. & Kumar, S. (1969). Archives of Biochemistry and Biophysics 134, 554.CrossRefGoogle Scholar
Palmquist, D. L., Sachan, D. S. & Davis, C. L. (1966). Federation Proceedings 25, 544.Google Scholar
Pennington, R. J. (1952). Biochemical Journal 51, 251.CrossRefGoogle Scholar
Phares, E. F. (1951). Archives of Biochemistry and Biophysics 33, 173.CrossRefGoogle Scholar
Popják, G., French, T. H., Hunter, G. D. & Martin, A. J. P. (1951). Biochemical Journal 48, 612.CrossRefGoogle Scholar
Porter, J. W. & Tietz, A. (1957). Biochimica et Biophysica Acta 25, 41.CrossRefGoogle Scholar
Rabinowitz, J. L. (1968). Analytical Biochemistry 22, 498.CrossRefGoogle Scholar
Seldinger, S. I. (1953). Acta Radiologica 39, 368.CrossRefGoogle Scholar
Shaw, J. C. & Knodt, C. B. (1941). Journal of Biological Chemistry 138, 287.CrossRefGoogle Scholar
Storry, J. E. & Rook, J. A. F. (1965). Biochemical Journal 96, 210.CrossRefGoogle Scholar
Storry, J. E., Rook, J. A. F. & Hall, A. J. (1967). British Journal of Nutrition 21, 425.CrossRefGoogle Scholar
Wakil, S. J. (1961). Journal of Lipid Research 2, 1.CrossRefGoogle Scholar
West, C. E., Annison, E. F. & Linzell, J. L. (1967). Biochemical Journal 102, 23 P.CrossRefGoogle Scholar
West, C. E. & Rowbotham, T. R. (1967). Journal of Chromatography 30, 62.CrossRefGoogle Scholar
Wood, H. G., Joffe, S., Gillespie, R., Hansen, R. G. & Hardenbrook, H. (1958). Journal of Biological Chemistry 233, 1264.CrossRefGoogle Scholar