Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T13:06:03.976Z Has data issue: false hasContentIssue false

Characterization of wild strains of Lactococcus lactis subsp. lactis isolated from Cabrales cheese

Published online by Cambridge University Press:  01 June 2009

Baltasar Mayo
Affiliation:
Departamento de Biología Funcional, Laboratorio de, Microbiología, Universidad de Oviedo, 33006 – Oviedo, Spain
Carlos Hardisson
Affiliation:
Departamento de Biología Funcional, Laboratorio de, Microbiología, Universidad de Oviedo, 33006 – Oviedo, Spain
Alfredo F. Braña
Affiliation:
Departamento de Biología Funcional, Laboratorio de, Microbiología, Universidad de Oviedo, 33006 – Oviedo, Spain

Summary

Twenty Lactococcus lactis subsp. lactis strains isolated from cheese made from raw milk have been, studied and compared with well known starter strains. Many of them produced acid bacteriocins resembling those of other lactic streptococci and their patterns of antimicrobial agent susceptibility were also similar to previously studied dairy strains. On the basis of their ability to clot milk they could be divided into two groups. Some strains were rapid fermenters, with high β-phosphogalactosidase and proteolytic activities. The other group had low β-phosphogalactosidase activity and coagulated milk slowly, but seemed to have proteolytic activity. All the strains had plasmid DNA in amounts and sizes similar to starter strains. A β-phosphogalactosidase probe was constructed with plasmid DNA from a Lc. lactis subsp. lactis NCDO 712 derivative. Southern hybridization located homologous sequences in chromosomal and plasmid DNA from the wild isolates that fermented lactose efficiently, but the degree of homology was lower than that observed between starter strains.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D. G. & McKay, L. L. 1983 Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Applied and Environmental Microbiology 46 549552CrossRefGoogle ScholarPubMed
Birnboim, H. C. & Doly, J. 1979 A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7 15131523CrossRefGoogle ScholarPubMed
Carlier, C. & Courvalin, P. 1982 Resistance of streptococci to aminoglycoside-aminocyclitol antibiotics. In Microbiology-1982 pp. 162166 (Ed. Schlessinger, D.) Washington, DC: American Society for MicrobiologyGoogle Scholar
Church, F. C., Swaisgood, H. E., Porter, D. H. & Catignani, G. L. 1983 Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science 66 12191227CrossRefGoogle Scholar
Church, F. C., Porter, D. H., Catignani, G. L. & Swaisgood, H. E. 1985 An o-phthalaldehyde Spectrophotometric assay for proteinases. Analytical Biochemistry 146 343348Google Scholar
Citti, J. E., Sandine, W. E. & Elliker, P. R. 1965 β-Galactosidase of Streptococcus lactis. Journal of Bacteriology 89 937942CrossRefGoogle ScholarPubMed
Clewell, D. B. 1981 Plasmids, drug resistance, and gene transfer in the genus Streptococcus. Microbiological Reviews 45 409436Google Scholar
Cords, B. R. & McKay, L. L. 1974 Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants. Journal of Bacteriology 119 830839CrossRefGoogle ScholarPubMed
Davies, F. L. & Gasson, M. J. 1981 Genetics of lactic acid bacteria. Journal of Dairy Research 48 363376Google Scholar
De Vos, W. M. & Simons, G. 1988 Molecular cloning of lactose genes in dairy lactic streptococci: the phospho- β-galactosidase and β-galactosidase genes and their expression products. Biochimie 70 461473CrossRefGoogle ScholarPubMed
Efstathiou, J. D. & McKay, L. L. 1976 Plasmids in Streptococcus lactis: evidence that lactose metabolism and proteinase activity are plasmid linked. Applied and Environmental Microbiology 32 3844Google Scholar
Farrow, J. A. E. & Garvie, E. I. 1979 Strains of Streptococcus lactis which contain β-galactosidase. Journal of Dairy Research 46 121125Google Scholar
Farrow, J. A. E. 1980 Lactose hydrolysing enzymes in Streptococcus lactis and Streptococcus cremoris and also in some other species of streptococci. Journal of Applied Bacteriology 49 493503Google Scholar
Gasson, M. J. & Davies, F. L. 1980 High-frequency conjugation associated with Streptococcus lactis donor cell aggregation. Journal of Bacteriology 143 12601264CrossRefGoogle ScholarPubMed
Gasson, M. J. 1983 Plasmid complements of Streptococcus lactic NCDO 712 and other lactic streptococci after protoplast-induced curing. Journal of Bacteriology 154 19CrossRefGoogle ScholarPubMed
Gasson, M. J. 1984 Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiology Letters 21 710Google Scholar
Hanahan, D. 1985 Techniques for transformation of E. coli. In DNA Cloning, Vol 1. pp. 109135 (Ed. Glover, M.). Oxford: Washington DC: IRC PressGoogle Scholar
Hirsch, A. 1952 The evolution of the lactic streptococci. Journal of Dairy Research 19 290293CrossRefGoogle Scholar
Holmes, D. S. & Quigley, M. 1981 A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114 193197Google Scholar
Inamine, J. M., Lee, L. N. & Leblanc, D. J. 1986 Molecular and genetic characterization of lactose- metabolic genes of Streptococcus cremoris. Journal of Bacteriology 167 855862Google Scholar
Klaenhammer, T. R. 1988 Bacteriocins of lactic acid bacteria. Biochimie 70 337349CrossRefGoogle ScholarPubMed
Kozak, W., Bardowski, J. & Dobrzanski, W. T. 1978 Lactostrepcins-acid bacteriocins produced by lactic streptococci. Journal of Dairy Research 45 247257CrossRefGoogle ScholarPubMed
Lennette, E. H., Balows, A., Hausler, W. J. Jr. & Shadomy, H. J. 1985 Manual of Clinical Microbiology 4th ednWashington, DC: American Society for MicrobiologyGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951 Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193 265275CrossRefGoogle ScholarPubMed
Maniatis, T., Frisch, E. F. & Sambrook, J. 1982 Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor LaboratoryGoogle Scholar
McFeters, G. A., Sandine, W. E. & Elliker, P. R. 1967 Purification and properties of Streptococcus lactis β-galactosidase. Journal of Bacteriology 93 914919Google Scholar
McKay, L. L., Miller, A. III, Sandine, W. E. & Elliker, P. R. 1970 Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses. Journal of Bacteriology 102 804809CrossRefGoogle ScholarPubMed
McKay, L. L. 1982 Regulation of lactose metabolism in dairy streptococci. In Developments in Food Microbiology- 1 pp. 153182 (Ed. Davies, R.). Essex: Applied Science Publishers LtdGoogle Scholar
McKay, L. L. 1983 Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49 259274Google Scholar
Mundt, J. O. 1982 The ecology of the streptococci. Microbial Ecology 8 355369CrossRefGoogle ScholarPubMed
Núñez, M. & Medina, M. 1979 [Lactic acid flora from blue Cabrales cheese.] Lait 59 497513Google Scholar
Orberg, P. K. & Sandine, W. E. 1985 Survey of antimicrobial resistance in lactic streptococci. Applied and Environmental Microbiology 49 538542CrossRefGoogle ScholarPubMed
Reinbold, G. W. & Reddy, M. S. 1974 Sensitivity or resistance of dairy starter and associated microorganisms to selected antibiotics. Journal of Milk and Food Technology 37 517521Google Scholar
Scherwitz, K. M., Baldwin, K. A. & McKay, L. L. 1983 Plasmid linkage of a bacteriocin-like substance in Streptococcus lactis subsp. diacetylactis strain WM4: transferability to Streptococcus lactis. Applied and Environmental Microbiology 45 15061512Google Scholar
Sinha, R. P. 1986 Development of high-level streptomycin resistance affected by a plasmid in lactic streptococci. Applied and Environmental Microbiology 52 255261Google Scholar
Southern, E. M. 1975 Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98 503517CrossRefGoogle ScholarPubMed
Terzaghi, B. E. & Sandine, W. E. 1975 Improved medium for lactic streptococci and their bacteriophages. Applied Microbiology 29 807813CrossRefGoogle ScholarPubMed
Thomas, T. D. & Pritchard, G. G. 1987 Proteolytic enzymes of dairy starter cultures. FEMS Microbiology Reviews 46 245268Google Scholar
Venema, G. & Kok, J. 1987 Improving dairy starter cultures. Trends in Biotechnology 5 144149Google Scholar
Von Wright, A., Suominen, M. & Sivelä, S. 1986 Identification of lactose fermentation plasmids of streptococcal dairy starter strains by Southern hybridization. Letters in Applied Microbiology 2 7376CrossRefGoogle Scholar
Yanisch-Perron, C., Vieira, J. & Messing, J. 1985 Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33 103119CrossRefGoogle ScholarPubMed