Published online by Cambridge University Press: 01 June 2009
Enhanced stability of β-galactosidase (Streptococcus salivarius subsp. thermophilus) in milk is due to several milk components acting in concert. Milk salts stabilized the enzyme 3-fold compared to phosphate buffer. K+ was a better stabilizer than Na+. Omission of divalent cations, especially Mg2+, caused a marked drop in stability. Lactose stabilized enzyme stored in the frozen state but destabilized enzyme stored unfrozen. Caseinate stabilized the enzyme 8-fold in phosphate buffer but it stabilized 144-fold in the presence of lactose. In the presence of milk proteins, lactose was 25 times as effective as galactose and 100 times as effective as glucose at promoting stability; sucrose slightly destabilized the enzyme. Stability rose with increasing lactose concentration but declined with increasing enzyme concentration. In milk, soluble casein was the primary stabilizer; whey proteins and peptides had much less effect. Micellar casein had no effect on stability.