Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T11:18:03.735Z Has data issue: false hasContentIssue false

Long-term impact of hypothyroidism during gestation and lactation on the mammary gland

Published online by Cambridge University Press:  07 June 2022

Fiorella Campo Verde Arboccó*
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina Universidad de Mendoza, Facultad de Ciencias Médicas, Mendoza, Argentina
Fabio A. Persia
Affiliation:
Universidad de Mendoza, Facultad de Ciencias Médicas, Mendoza, Argentina
Leila Zyla
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
Nicolás Bernal
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
Verónica C. Sasso
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
Flavia Santiano
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
Silvina Gomez
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
Flavia Bruna
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
Virginia Pistone-Creydt
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
Constanza Lopez-Fontana
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
Graciela A. Jahn
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
María Belén Hapon
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
Ruben W. Carón
Affiliation:
Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET 5500 Mendoza Argentina – Universidad Nacional de Cuyo, Mendoza, Argentina
*
Address for correspondence: Dr. Fiorella Campo Verde Arbocco, Imbecu Conicet, C.C. 855, 5500 Mendoza, Argentina. Fax: 54 261 5244001. Emails: arboccocv@gmail.com, farbocco@mendoza-conicet.gob.ar

Abstract

The functional differentiation of the mammary gland (MG) is fundamental for the prevention of mammary pathologies. This process occurs throughout pregnancy and lactation, making these stages key events for the study of pathologies associated with development and differentiation. Many studies have investigated the link between mammary pathologies and thyroid diseases, but most have ignored the role of thyroid hormone (TH) in the functional differentiation of the MG. In this work, we show the long-term impact of hypothyroidism in an animal model whose lactogenic differentiation occurred at low TH levels. We evaluated the ability of the MG to respond to hormonal control and regulate cell cycle progression. We found that a deficit in TH throughout pregnancy and lactation induces a long-term decrease in Rb phosphorylation, increases p53, p21, Cyclin D1 and Ki67 expression, reduces progesterone receptor expression, and induces nonmalignant lesions in mammary tissue. This paper shows the importance of TH level control during mammary differentiation and its long-term impact on mammary function.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Fiorella Campo Verde Arboccó and Fabio A. Persia are the equal collaborators.

References

Rijnkels, M, Kabotyanski, E, Montazer-Torbati, MB, et al. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia. 2010; 15(1), 85100.CrossRefGoogle ScholarPubMed
Neville, MC, McFadden, TB, Forsyth, I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002; 7(1), 4966.CrossRefGoogle ScholarPubMed
Rudolph, MC, McManaman, JL, Hunter, L, Phang, T, Neville, MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia. 2003; 8(3), 287307.CrossRefGoogle ScholarPubMed
Russo, J. Reproductive history and breast cancer prevention. Horm Mol Biol Clin Investig. 2016; 27, 310.Google ScholarPubMed
Wagner, KU, Boulanger, CA, Henry, MD, Sgagias, M, Hennighausen, L, Smith, GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002; 129(6), 13771386.CrossRefGoogle ScholarPubMed
Rijnkels, M, Freeman-Zadrowski, C, Hernandez, J, et al. Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation. PloS One. 2013; 8(1), e53270.CrossRefGoogle ScholarPubMed
Masso-Welch, PA, Darcy, KM, Stangle-Castor, NC, Ip, MM. A developmental atlas of rat mammary gland histology. J Mammary Gland Biol Neoplasia. 2000; 5(2), 165185.CrossRefGoogle ScholarPubMed
Lowe, CR, MacMahon, B. Breast cancer and reproduction. Lancet. 1970; 2(7683), 1137.CrossRefGoogle ScholarPubMed
Lowe, CR, MacMahon, B. Breast cancer and reproductive history of women in South Wales. Lancet. 1970; 1(7639), 153156.CrossRefGoogle ScholarPubMed
MacMahon, B, Cole, P, Lin, TM, et al. Age at first birth and breast cancer risk. Bull World Health Organ. 1970; 43, 209221.Google ScholarPubMed
MacMahon, B, Lin, TM, Lowe, CR, et al. Lactation and cancer of the breast. A summary of an international study. Bull World Health Organ. 1970; 42, 185194.Google ScholarPubMed
Yuasa, S, MacMahon, B. Lactation and reproductive histories of breast cancer patients in Tokyo. Japan Bull World Health Organ. 1970; 42, 195204.Google ScholarPubMed
Lambertini, M, Santoro, L, Del Mastro, L, et al. Reproductive behaviors and risk of developing breast cancer according to tumor subtype: a systematic review and meta-analysis of epidemiological studies. Cancer Treat Rev. 2016; 49, 6576.CrossRefGoogle ScholarPubMed
Campo Verde Arbocco, F, Persia, FA, Hapon, MB, Jahn, GA. Hypothyroidism decreases JAK/STAT signaling pathway in lactating rat mammary gland. Mol Cell Endocrinol. 2017; 450, 1423.CrossRefGoogle ScholarPubMed
Campo Verde Arbocco, F, Sasso, CV, Actis, EA, Caron, RW, Hapon, MB, Jahn, GA. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol. 2016; 419, 1828.CrossRefGoogle ScholarPubMed
Perra, A, Kowalik, MA, Pibiri, M, Ledda-Columbano, GM, Columbano, A. Thyroid hormone receptor ligands induce regression of rat preneoplastic liver lesions causing their reversion to a differentiated phenotype. Hepatology. 2009; 49(4), 12871296.CrossRefGoogle ScholarPubMed
Lopez-Fontal, R, Zeini, M, Traves, PG, et al. Mice lacking thyroid hormone receptor Beta show enhanced apoptosis and delayed liver commitment for proliferation after partial hepatectomy. PloS One. 2010; 5(1), e8710.CrossRefGoogle ScholarPubMed
Pascual, A, Aranda, A. Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta. 2013; 1830(7), 39083916.CrossRefGoogle ScholarPubMed
Brent, GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012; 122(9), 30353043.CrossRefGoogle ScholarPubMed
Bernal, J. Thyroid hormone receptors in brain development and function. Nature clinical practice. Endocrinol Metab. 2007; 3, 249259.Google Scholar
Thompson, CC, Potter, GB. Thyroid hormone action in neural development. Cereb Cortex. 2000; 10(10), 939945.CrossRefGoogle ScholarPubMed
Marasco, LA. Unsolved mysteries of the human mammary gland: defining and redefining the critical questions from the lactation consultant’s perspective. J Mammary Gland Biol Neoplasia. 2014; 19(3-4), 271288.CrossRefGoogle ScholarPubMed
Magri, F, Chiovato, L, Croce, L, Rotondi, M. Thyroid hormone therapy for subclinical hypothyroidism. Endocrine. 2019; 66(1), 2734.CrossRefGoogle ScholarPubMed
Kianpour, M, Aminorroaya, A, Amini, M, Feizi, A, Aminorroaya Yamini, S, Janghorbani, M. Thyroid-stimulating hormone (TSH) serum levels and risk of spontaneous abortion: a prospective population-based cohort study. Clin Endocrinol. 2019; 91(4), 163169.Google ScholarPubMed
Kianpour, M, Aminorroaya, A, Amini, M, et al. Reference intervals for thyroid hormones during the first trimester of gestation: a report from an area with a sufficient iodine level. Horm Metab Res. 2019; 51(03), 165171.Google ScholarPubMed
Zhou, Q, Zhang, Y, Zhou, J, et al. Analysis of detection results of thyroid function-related indexes in pregnant women and establishment of the reference interval. Exp Ther Med. 2019; 17, 17491755.Google ScholarPubMed
Alcazar Lazaro, V, Lopez Del Val, T, Garcia Lacalle, C, et al. Slightly elevated thyrotropin levels in pregnancy in our clinical practice. Endocrinol Diabetes Nutr. 2019; 66(10), 620627.CrossRefGoogle ScholarPubMed
Castillo, C, Lustig, N, Margozzini, P, et al. Thyroid-stimulating hormone reference ranges in the first trimester of pregnancy in an iodine-sufficient country. Endocrinol Metab (Seoul). 2018; 33(4), 466472.CrossRefGoogle Scholar
Strbak, V, Macho, L, Skultetyova, M, Michalickova, J, Pohlova, G. Thyroid hormones in milk: physiological approach--a review. Endocrinol Exp. 1983; 17, 219235.Google ScholarPubMed
Negro, R, Stagnaro-Green, A. Diagnosis and management of subclinical hypothyroidism in pregnancy. BMJ. 2014; 349(4), g4929g4929.CrossRefGoogle ScholarPubMed
Taylor, PN, Minassian, C, Rehman, A, et al. TSH levels and risk of miscarriage in women on long-term levothyroxine: a community-based study. J Clin Endocrinol Metab. 2014; 99(10), 38953902.CrossRefGoogle ScholarPubMed
da Silveira, JC. [The thyroid hormone as complementary treatment in genital and mammary cancer]. Rev Ginecol Obstet (Sao Paulo). 1965; 116, 287293.Google ScholarPubMed
Hercbergs, A, Mousa, SA, Leinung, M, Lin, HY, Davis, PJ. Thyroid hormone in the clinic and breast cancer. Horm Cancer. 2018; 9(3), 139143.CrossRefGoogle ScholarPubMed
Cristofanilli, M, Yamamura, Y, Kau, SW, et al. Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma. Ann Ny Acad Sci. 2005; 103, 11221128.Google ScholarPubMed
Lopez Fontana, CM, Zyla, LE, Santiano, FE, et al. Hypothyroidism reduces mammary tumor progression via Beta-catenin-activated intrinsic apoptotic pathway in rats. Histochem Cell Biol. 2017; 147(6), 759769.CrossRefGoogle ScholarPubMed
Lopez-Fontana, CM, Sasso, CV, Maselli, ME, et al. Experimental hypothyroidism increases apoptosis in dimethylbenzanthracene-induced mammary tumors. Oncol Rep. 2013; 30(4), 16511660.CrossRefGoogle ScholarPubMed
Silanikove, N. Natural and abrupt involution of the mammary gland affects differently the metabolic and health consequences of weaning. Life Sci. 2014; 102(1), 1015.CrossRefGoogle ScholarPubMed
Basree, MM, Shinde, N, Koivisto, C, et al. Abrupt involution induces inflammation, estrogenic signaling, and hyperplasia linking lack of breastfeeding with increased risk of breast cancer. Breast Cancer Res BCR. 2019; 21(1), 80.CrossRefGoogle ScholarPubMed
Pfaffl, MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29(9), e4545.CrossRefGoogle ScholarPubMed
Simpson, RJ. Quantifying protein by bicinchoninic acid. CSH Protocols. 2008, 2008; 2008(8), pdbprot4722.Google ScholarPubMed
Schindelin, J, Arganda-Carreras, I, Frise, E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7), 676682.CrossRefGoogle ScholarPubMed
Vasudevan, N, Koibuchi, N, Chin, WW, Pfaff, DW. Differential crosstalk between estrogen receptor (ER)alpha and ERbeta and the thyroid hormone receptor isoforms results in flexible regulation of the consensus ERE. Mol Brain Res. 2001; 95(1-2), 917.CrossRefGoogle ScholarPubMed
Vasudevan, N, Ogawa, S, Pfaff, D. Estrogen and thyroid hormone receptor interactions: physiological flexibility by molecular specificity. Physiol Rev. 2002; 82(4), 923944.CrossRefGoogle ScholarPubMed
Vasudevan, N, Zhu, YS, Daniel, S, Koibuchi, N, Chin, WW, Pfaff, D. Crosstalk between oestrogen receptors and thyroid hormone receptor isoforms results in differential regulation of the preproenkephalin gene. J Neuroendocrinol. 2001; 13(9), 779790.CrossRefGoogle ScholarPubMed
Russo, IH, Russo, J. Pregnancy-induced changes in breast cancer risk. J Mammary Gland Biol Neoplasia. 2011; 16(3), 221233.CrossRefGoogle ScholarPubMed
Russo, J, Tay, LK, Russo, IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat. 1982; 2(1), 573.CrossRefGoogle ScholarPubMed
Lamartiniere, CA, Jenkins, S, Betancourt, AM, Wang, J, Russo, J. Exposure to the endocrine disruptor bisphenol a alters susceptibility for mammary cancer. Horm Mol Biol Clin Investig. 2011; 5(2), 4552.Google Scholar
Palmer, JR, Viscidi, E, Troester, MA, et al. Parity, lactation, and breast cancer subtypes in African American women: results from the AMBER Consortium. J Natl Cancer Inst. 2014; 106(10), 199.CrossRefGoogle ScholarPubMed
John, EM, Hines, LM, Phipps, AI, et al. Reproductive history, breast-feeding and risk of triple negative breast cancer: the breast cancer etiology in minorities (BEM) study. Int J Cancer. 2018; 142(11), 22732285.CrossRefGoogle ScholarPubMed
Li, H, Sun, X, Miller, E, et al. BMI, reproductive factors, and breast cancer molecular subtypes: a case-control study and meta-analysis. J Epidemiol. 2017; 27(4), 143151.CrossRefGoogle ScholarPubMed
Falstie-Jensen, AM, Kjaersgaard, A, Lorenzen, EL, et al. Hypothyroidism and the risk of breast cancer recurrence and all-cause mortality – a Danish population-based study. Breast Cancer Res BCR. 2019; 21(1), 44.CrossRefGoogle ScholarPubMed
Sogaard, M, Farkas, DK, Ehrenstein, V, Jorgensen, JO, Dekkers, OM, Sorensen, HT. Hypothyroidism and hyperthyroidism and breast cancer risk: a nationwide cohort study. Eur J Endocrinol. 2016; 174(4), 409414.CrossRefGoogle Scholar
Tian, L, Shao, F, Qin, Y, Guo, Q, Gao, C. Hypothyroidism and related diseases: a methodological quality assessment of meta-analysis. BMJ Open. 2019; 9(3), e024111.CrossRefGoogle Scholar
Medeiros, MF, Cerqueira, TL, Silva Junior, JC, et al. An international survey of screening and management of hypothyroidism during pregnancy in Latin America. Arq Bras Endocrinol. 2014; 58(9), 906911.CrossRefGoogle ScholarPubMed
Moser, J, Miller, I, Carter, D, Spencer, SL. Control of the restriction point by Rb and p21. Proc Natl Acad Sci U S A. 2018; 115(35), E8219E8227.CrossRefGoogle ScholarPubMed
Spencer, SL, Cappell, SD, Tsai, FC, Overton, KW, Wang, CL, Meyer, T. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell. 2013; 155(2), 369383.CrossRefGoogle ScholarPubMed
Thomasova, D, Anders, HJ. Cell cycle control in the kidney. Nephrol Dial Transplant. 2015; 30(10), 16221630.CrossRefGoogle ScholarPubMed
Hvid, H, Thorup, I, Sjogren, I, Oleksiewicz, MB, Jensen, HE. Mammary gland proliferation in female rats: effects of the estrous cycle, pseudo-pregnancy and age. Exp Toxicol Pathol. 2012; 64(4), 321332.CrossRefGoogle ScholarPubMed
Gustafsson, JA, Warner, M. Estrogen receptor beta in the breast: role in estrogen responsiveness and development of breast cancer. J Steroid Biochem Mol Biol. 2000; 74(5), 245248.CrossRefGoogle ScholarPubMed
Feuerhake, F, Sigg, W, Hofter, EA, Unterberger, P, Welsch, U. Cell proliferation, apoptosis, and expression of Bcl-2 and Bax in non-lactating human breast epithelium in relation to the menstrual cycle and reproductive history. Breast Cancer Res Treat. 2003; 77(1), 3748.CrossRefGoogle Scholar
Cenciarini, ME, Proietti, CJ. Molecular mechanisms underlying progesterone receptor action in breast cancer: insights into cell proliferation and stem cell regulation. Steroids. 2019; 152(2018), 108503.CrossRefGoogle ScholarPubMed
Elizalde, PV, Proietti, CJ. The molecular basis of progesterone receptor action in breast carcinogenesis. Horm Mol Biol Clin Investig. 2012; 9(2), 105117.Google ScholarPubMed
Cordero, A, Pellegrini, P, Sanz-Moreno, A, et al. Rankl impairs lactogenic differentiation through inhibition of the prolactin/stat5 pathway at midgestation. Stem Cells. 2016; 34(4), 10271039.CrossRefGoogle ScholarPubMed
Muraoka-Cook, RS, Sandahl, M, Hunter, D, Miraglia, L, Earp, HS. Prolactin and ErbB4/HER4 signaling interact via Janus kinase 2 to induce mammary epithelial cell gene expression differentiation. Mol Endocrinol. 2008; 22(10), 23072321.CrossRefGoogle ScholarPubMed
Kreuzaler, PA, Staniszewska, AD, Li, W, et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol. 2011; 13(3), 303309.CrossRefGoogle ScholarPubMed
Watson, CJ. Immune cell regulators in mouse mammary development and involution. J Anim Sci. 2009; 87(suppl_13), 3542.CrossRefGoogle ScholarPubMed
Merino, D, Lok, SW, Visvader, JE, Lindeman, GJ. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene. 2016; 35(15), 18771887.CrossRefGoogle ScholarPubMed
Lin, HY, Chin, YT, Yang, YC, et al. Thyroid hormone, cancer, and apoptosis. Compr Physiol. 2016; 6, 12211237.CrossRefGoogle ScholarPubMed
Hapon, MB, Varas, SM, Jahn, GA, Gimenez, MS. Effect of hypothyroidism on mammary and liver lipid metabolism in vingin and late-pregnant rats. J Lipids Res. March 1, 2005, 10.1194/jlr.M400325-JLR200.Google Scholar
Supplementary material: PDF

Arboccó et al. supplementary material

Figure S1

Download Arboccó et al. supplementary material(PDF)
PDF 23.1 KB
Supplementary material: PDF

Arboccó et al. supplementary material

Figure S2

Download Arboccó et al. supplementary material(PDF)
PDF 18.7 KB