Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T20:59:28.908Z Has data issue: false hasContentIssue false

Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces

Published online by Cambridge University Press:  10 July 2009

E. CALZAVARINI*
Affiliation:
Laboratoire de Physique de École Normale Supérieure de Lyon, CNRS et Université de Lyon, 46 Allée d'Italie, 69007 Lyon, France International Collaboration for Turbulence Research
R. VOLK
Affiliation:
Laboratoire de Physique de École Normale Supérieure de Lyon, CNRS et Université de Lyon, 46 Allée d'Italie, 69007 Lyon, France International Collaboration for Turbulence Research
M. BOURGOIN
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, CNRS/UJF/INPG UMR5519, BP53, 38041 Grenoble, France International Collaboration for Turbulence Research
E. LÉVÊQUE
Affiliation:
Laboratoire de Physique de École Normale Supérieure de Lyon, CNRS et Université de Lyon, 46 Allée d'Italie, 69007 Lyon, France International Collaboration for Turbulence Research
J.-F. PINTON
Affiliation:
Laboratoire de Physique de École Normale Supérieure de Lyon, CNRS et Université de Lyon, 46 Allée d'Italie, 69007 Lyon, France International Collaboration for Turbulence Research
F. TOSCHI
Affiliation:
Department of Physics and Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands International Collaboration for Turbulence Research
*
Email address for correspondence: enrico.calzavarini@ens-lyon.fr

Abstract

The dynamics of particles in turbulence when the particle size is larger than the dissipative scale of the carrier flow are studied. Recent experiments have highlighted signatures of particles' finiteness on their statistical properties, namely a decrease of their acceleration variance, an increase of correlation times (at increasing the particles size) and an independence of the probability density function of the acceleration once normalized to their variance. These effects are not captured by point-particle models. By means of a detailed comparison between numerical simulations and experimental data, we show that a more accurate description is obtained once Faxén corrections are included.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arneodo, A., Benzi, R., Berg, J., Biferale, L., Bodenschatz, E., Busse, A., Calzavarini, E., Castaing, B., Cencini, M., Chevillard, L., Fisher, R., Grauer, R., Homann, H., Lamb, D., Lanotte, A. S., Leveque, E., Luthi, B., Mann, J., Mordant, N., Muller, W.-C., Ott, S., Ouellette, N. T., Pinton, J.-F., Pope, S. B., Roux, S. G., Toschi, F., Xu, H. & Yeung, P. K., ICTR Collaboration 2008 Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100 (25), 254504254505.CrossRefGoogle ScholarPubMed
Auton, T., Hunt, J. & Prud'homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.CrossRefGoogle Scholar
Ayyalasomayajula, S., Gylfason, A., Collins, L. R., Bodenschatz, E. & Warhaft, Z. 2006 Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97, 144507.CrossRefGoogle ScholarPubMed
Babiano, A., Cartwright, J. H. E., Piro, O. & Provenzale, A. 2000 Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett. 84 (25), 57645767.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids. 15 (11), 34963513.CrossRefGoogle Scholar
Balkovsky, E., Falkovich, G. & Fouxon, A. 2001 Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86 (13), 27902793.CrossRefGoogle ScholarPubMed
Bec, J. 2005 Multifractal concentrations of inertial particles in smooth random flows. J. Fluid Mech. 528, 255277.CrossRefGoogle Scholar
Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349358.CrossRefGoogle Scholar
Berg, J. 2006 Lagrangian one-particle velocity statistics in a turbulent flow. Phys. Rev. E 74, 016304.CrossRefGoogle Scholar
Biferale, L., Bodenschatz, E., Cencini, M., Lanotte, A. S., Ouellette, N. T., Toschi, F. & Xu, H. 2008 Lagrangian structure functions in turbulence: a quantitative comparison between experiment and direct numerical simulation. Phys. Fluids 20 (6), 065103.CrossRefGoogle Scholar
Calzavarini, E., Cencini, M., Lohse, D. & Toschi, F. 2008 a Quantifying turbulence-induced segregation of inertial particles. Phys. Rev. Lett. 101, 084504.CrossRefGoogle ScholarPubMed
Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 b Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607, 1324.CrossRefGoogle Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.Google Scholar
Faxén, H. 1922 Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist, Annalen der Physik 373 (10), 89119.CrossRefGoogle Scholar
Gatignol, R. 1983 The Faxén formulae for a rigid particle in an unsteady non-uniform stokes flow. J. Mec. Theor. Appl. 1 (2), 143160.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. USSR Acad. Sci. 30, 299303.Google Scholar
La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2001 Fluid particle accelerations in fully developed turbulence. Nature 409, 1017.CrossRefGoogle ScholarPubMed
Magnaudet, J. & Legendre, D. 1998 Some aspects of the lift force on a spherical bubble. Appl. Sci. Res. 58, 441.CrossRefGoogle Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
Michaelides, E. E. 1997 Review – the transient equation of motion for particles, bubbles, and droplets. J. Fluid Eng. 119, 233247.CrossRefGoogle Scholar
Mordant, N., Lévêque, E. & Pinton, J. F. 2004 Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J. Phys. 6, 116.CrossRefGoogle Scholar
Mordant, N., Metz, P., Michel, O. & Pinton, J.-F. 2001 Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87 (21), 214501.CrossRefGoogle ScholarPubMed
Ouellette, N. T., O'Malley, P. J. J. & Gollub, J. P. 2008 Transport of finite-sized particles in chaotic flow. Phys. Rev. Lett. 101, 174504.CrossRefGoogle ScholarPubMed
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.CrossRefGoogle ScholarPubMed
Salazar, J., de Jong, J., Cao, L., Woodward, S., Meng, H. & Collins, L. 2008 Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech. 600, 245256.CrossRefGoogle Scholar
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3 (5), 11691179.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Verhille, G., Lohse, D., Mordant, N., Pinton, J. F. & Toschi, F. 2008 a Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Physica D 237 (14–17), 20842089.CrossRefGoogle Scholar
Volk, R., Mordant, N., Verhille, G. & Pinton, J. F. 2008 b Laser doppler measurement of inertial particle and bubble accelerations in turbulence. Europhys. Lett. 81 (3), 34002.CrossRefGoogle Scholar
Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Xu, H., Bourgoin, M., Ouellette, N. T. & Bodenschatz, E. 2006 High order Lagrangian velocity statistics in turbulence. Phys. Rev. Lett. 96 (2), 024503.CrossRefGoogle ScholarPubMed