Published online by Cambridge University Press: 29 March 2006
A linear theory is presented for the steady, axially symmetric motion of a stratified fluid in a narrow, rotating spherical annulus with a spherically symmetric gravitational field.
The fluid is driven by a combination of differential rotation of the two shells and differential heating applied at the surfaces of the spheres.
It is shown that the effect of stratification becomes increasingly important at lower latitudes with the Ekman layers on the spheres’ surfaces fading in strength as the geostrophic interior velocities themselves tend toward the shell speeds at lower latitudes.
The Singularities In The Geostrophic Solutions At The Equator Are Removed By A Boundary Layer Whose Detailed Structure Depends On The Ratio Of Horizontal To Vertical Mixing Coefficients Of Momentum And Heat.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.