Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T01:03:45.676Z Has data issue: false hasContentIssue false

Axisymmetric superdirectivity in subsonic jets

Published online by Cambridge University Press:  03 July 2012

André V. G. Cavalieri*
Affiliation:
Département Fluides, Thermique, Combustion, Institut Pprime, CNRS–Université de Poitiers–ENSMA, 86036 Poitiers CEDEX, Poitiers, France Divisão de Engenharia Aeronáutica, Instituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, SP, Brazil
Peter Jordan
Affiliation:
Département Fluides, Thermique, Combustion, Institut Pprime, CNRS–Université de Poitiers–ENSMA, 86036 Poitiers CEDEX, Poitiers, France
Tim Colonius
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
Yves Gervais
Affiliation:
Département Fluides, Thermique, Combustion, Institut Pprime, CNRS–Université de Poitiers–ENSMA, 86036 Poitiers CEDEX, Poitiers, France
*
Email address for correspondence: andre.cavalieri@univ-poitiers.fr

Abstract

We present experimental results for the acoustic field of jets with Mach numbers between 0.35 and 0.6. An azimuthal ring array of six microphones, whose polar angle, , was progressively varied, allows the decomposition of the acoustic pressure into azimuthal Fourier modes. In agreement with past observations, the sound field for low polar angles (measured with respect to the jet axis) is found to be dominated by the axisymmetric mode, particularly at the peak Strouhal number. The axisymmetric mode of the acoustic field can be clearly associated with an axially non-compact source, in the form of a wavepacket: the sound pressure level for peak frequencies is found be superdirective for all Mach numbers considered, with exponential decay as a function of , where is the Mach number based on the phase velocity of the convected wave. While the mode spectrum scales with Strouhal number, suggesting that its energy content is associated with turbulence scales, the axisymmetric mode scales with Helmholtz number – the ratio between source length scale and acoustic wavelength. The axisymmetric radiation has a stronger velocity dependence than the higher-order azimuthal modes, again in agreement with predictions of wavepacket models. We estimate the axial extent of the source of the axisymmetric component of the sound field to be of the order of six to eight jet diameters. This estimate is obtained in two different ways, using, respectively, the directivity shape and the velocity exponent of the sound radiation. The analysis furthermore shows that compressibility plays a significant role in the wavepacket dynamics, even at this low Mach number. Velocity fluctuations on the jet centreline are reduced as the Mach number is increased, an effect that must be accounted for in order to obtain a correct estimation of the velocity dependence of sound radiation. Finally, the higher-order azimuthal modes of the sound field are considered, and a model for the low-angle sound radiation by helical wavepackets is developed. The measured sound for azimuthal modes 1 and 2 at low Strouhal numbers is seen to correspond closely to the predicted directivity shapes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Armstrong, R. R., Fuchs, H. V. & Michalke, A. 1977 Coherent structures in jet turbulence and noise. AIAA J. 15, 10111017.CrossRefGoogle Scholar
2. Batchelor, G. K. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14 (4), 529551.CrossRefGoogle Scholar
3. Bogey, C., Barré, S., Fleury, V., Bailly, C. & Juvé, D. 2007 Experimental study of the spectral properties of near-field and far-field jet noise. Intl J. Aeroacoust. 6 (2), 7392.CrossRefGoogle Scholar
4. Bridges, J. E. & Hussain, A. K. M. F. 1987 Roles of initial condition and vortex pairing in jet noise. J. Sound Vib. 117 (2), 289311.CrossRefGoogle Scholar
5. Brown, C. A. & Bridges, J. 2006 Acoustic efficiency of azimuthal modes in jet noise using chevron nozzles. Tech. Rep. National Aeronautics and Space Administration.CrossRefGoogle Scholar
6. Cavalieri, A. V. G., Daviller, G., Comte, P., Jordan, P., Tadmor, G. & Gervais, Y. 2011a Using large eddy simulation to explore sound-source mechanisms in jets. J. Sound Vib. 330 (17), 40984113.Google Scholar
7. Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y. 2011b Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18–19), 44744492.Google Scholar
8. Cavalieri, A. V. G., Jordan, P., Gervais, Y., Wei, M. & Freund, J. B. 2010 Intermittent sound generation and its control in a free-shear flow. Phys. Fluids 22 (11), 115113.Google Scholar
9. Cohen, J. & Wygnanski, I. 1987 The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191219.CrossRefGoogle Scholar
10. Colonius, T., Samanta, A. & Gudmundsson, K. 2010 Parabolized stability equation models of large-scale jet mixing noise. Procedia Engng 6, 6473.CrossRefGoogle Scholar
11. Crighton, D. G. 1975 Basic principles of aerodynamic noise generation. Prog. Aerosp. Sci. 16 (1), 3196.CrossRefGoogle Scholar
12. Crighton, D. G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (2), 397413.CrossRefGoogle Scholar
13. Crighton, D. G. & Huerre, P. 1990 Shear-layer pressure fluctuations and superdirective acoustic sources. J. Fluid Mech. 220, 355368.Google Scholar
14. Crow, S. C. 1972 Acoustic gain of a turbulent jet. In Paper IE.6, Meeting of Division of Fluid Dynamics, American Physical Society, University of Colorado, Boulder, November 1972.Google Scholar
15. Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.CrossRefGoogle Scholar
16. Ffowcs Williams, J. E. & Kempton, A. J. 1978 The noise from the large-scale structure of a jet. J. Fluid Mech. 84 (4), 673694.CrossRefGoogle Scholar
17. Fuchs, H. V. & Armstrong, R. R. 1978 Turbulent source coherence and Helmholtz number as aerodynamic noise parameters. In Structure and Mechansims of Turbulence (ed. Fiedler, H. ). vol. II. pp. 189201. Springer.Google Scholar
18. Fuchs, H. V. & Michel, U. 1978 Experimental evidence of turbulent source coherence affecting jet noise. AIAA J. 16 (9), 871872.CrossRefGoogle Scholar
19. Goldstein, M. E. 1976 Aeroacoustics, p. 305. McGraw-Hill.Google Scholar
20. Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.CrossRefGoogle Scholar
21. Hileman, J. I., Thurow, B. S., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.CrossRefGoogle Scholar
22. Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1981 The ‘preferred mode’ of the axisymmetric jet. J. Fluid Mech. 110, 3971.Google Scholar
23. Juvé, D., Sunyach, M. & Comte-Bellot, G. 1979 Filtered azimuthal correlations in the acoustic far field of a subsonic jet. AIAA J. 17, 112.CrossRefGoogle Scholar
24. Karabasov, S., Afsar, M. Z., Hynes, T. P., Dowling, A. P., McMullan, W. A., Pokora, C. D., Page, G. J. & McGuirk, J. J. 2010 Jet noise: acoustic analogy informed by large eddy simulation. AIAA J. 48 (7), 13121325.CrossRefGoogle Scholar
25. Kœnig, M., Cavalieri, A. V. G., Jordan, P., Delville, J., Gervais, Y., Papamoschou, D., Samimy, M. & Lele, S. K. 2010 Farfield pre-filterering and source-imaging for the study of jet noise. In 16th AIAA/CEAS Aeroacoustics Conference and Exhibit. Stockholm, Sweden.CrossRefGoogle Scholar
26. Lau, J. C., Fisher, M. J. & Fuchs, H. V. 1972 The intrinsic structure of turbulent jets. J. Sound Vib. 22 (4), 379384.Google Scholar
27. Laufer, J. & Yen, T.-C. 1983 Noise generation by a low-Mach-number jet. J. Fluid Mech. 134, 131.Google Scholar
28. Lee, H. K. & Ribner, H. S. 1972 Direct correlation of noise and flow of a jet. J. Acoust. Soc. Am. 52, 1280.Google Scholar
29. Lele, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26 (1), 211254.CrossRefGoogle Scholar
30. Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211 (1107), 564587.Google Scholar
31. Lush, P. A. 1971 Measurements of subsonic jet noise and comparison with theory. J. Fluid Mech. 46 (3), 477500.CrossRefGoogle Scholar
32. Mankbadi, R. & Liu, J. T. C. 1984 Sound generated aerodynamically revisited: large-scale structures in a turbulent jet as a source of sound. Phil. Trans. R. Soc. Lond. A 311 (1516), 183217.Google Scholar
33. Michalke, A. 1970 A wave model for sound generation in circular jets. Tech. Rep. Deutsche Luft- und Raumfahrt.Google Scholar
34. Michalke, A. 1971 Instabilitat eines Kompressiblen Runden Freistrahls unter Berucksichtigung des Einflusses der Strahlgrenzschichtdicke. Z. Flugwiss. 19, 319328; English translation: NASA TM 75190, 1977.Google Scholar
35. Michalke, A. 1972 An expansion scheme for the noise from circular jets. Z. Flugwiss. 20, 229237.Google Scholar
36. Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.Google Scholar
37. Michalke, A. & Fuchs, H. V. 1975 On turbulence and noise of an axisymmetric shear flow. J. Fluid Mech. 70, 179205.CrossRefGoogle Scholar
38. Michel, U. 2009 The role of source interference in jet noise. In 15th AIAA/CEAS Aeroacoustics Conference (30th Aeroacoustics Conference), pp. 1–15.Google Scholar
39. Mollo-Christensen, E. 1963 Measurements of near field pressure of subsonic jets. Tech. Rep. Advisory Group for Aeronautical Research and Development, Paris, France.Google Scholar
40. Mollo-Christensen, E. 1967 Jet noise and shear flow instability seen from an experimenter’s viewpoint (Similarity laws for jet noise and shear flow instability as suggested by experiments). Trans. ASME: J. Appl. Mech. 34, 17.CrossRefGoogle Scholar
41. Moore, C. J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80 (2), 321367.Google Scholar
42. Morris, P. J. 2010 The instability of high speed jets. Intl J. Aeroacoust. 9 (1), 150.CrossRefGoogle Scholar
43. Morse, P. M. & Ingard, K. U. 1968 Theoretical Acoustics. McGraw-Hill.Google Scholar
44. Petersen, R. A. & Samet, M. M. 1988 On the preferred mode of jet instability. J. Fluid Mech. 194, 153173.CrossRefGoogle Scholar
45. Reba, R., Narayanan, S. & Colonius, T. 2010 Wave-packet models for large-scale mixing noise. Intl J. Aeroacoust. 9 (4), 533558.Google Scholar
46. Sandham, N. D., Morfey, C. L. & Hu, Z. W. 2006 Sound radiation from exponentially growing and decaying surface waves. J. Sound Vib. 294 (1), 355361.CrossRefGoogle Scholar
47. Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.Google Scholar
48. Tanna, H. K. 1977 An experimental study of jet noise. Part I. Turbulent mixing noise. J. Sound Vib. 50 (3), 405428.Google Scholar
49. Tinney, C. E. & Jordan, P. 2008 The near pressure field of co-axial subsonic jets. J. Fluid Mech. 611, 175204.CrossRefGoogle Scholar
50. Tutkun, M., George, W. K., Foucaut, J. M., Coudert, S., Stanislas, M. & Delville, J. 2009 In situ calibration of hot wire probes in turbulent flows. Exp. Fluids 46 (4), 617629.CrossRefGoogle Scholar
51. Viswanathan, K. 2004 Aeroacoustics of hot jets. J. Fluid Mech. 516, 3982.CrossRefGoogle Scholar
52. Viswanathan, K. 2006 Scaling laws and a method for identifying components of jet noise. AIAA J. 44 (10), 2274.Google Scholar
53. Zaman, K. B. M. Q. & Yu, J. C. 1985 Power spectral density of subsonic jet noise. J. Sound Vib. 98 (4), 519537.Google Scholar