Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-28T04:33:52.150Z Has data issue: false hasContentIssue false

Base pressure in laminar supersonic flow

Published online by Cambridge University Press:  29 March 2006

A. F. Messiter
Affiliation:
Department of Aerospace Engineering, University of Michigan, Ann Arbor
G. R. Hough
Affiliation:
N.A.S.A. Ames Research Center, Moffett Field, California
A. Feo
Affiliation:
Instituto Nacional de Tecnica Aeroespacial, Esteban Terradas, Madrid

Abstract

An asymptotic description is proposed for supersonic laminar flow over a wedge or a backward-facing step, for large Reynolds number and for a base or step height which is small compared with the boundary-layer length. The analysis is carried out for adiabatic wall conditions and a viscosity coefficient proportional to temperature. In a particular limit corresponding to a very thick boundary layer, a similarity law is obtained for the base pressure $\overline{p}_b$. For a thinner boundary layer an asymptotic form for $\overline{p}_b$ is obtained which shows the dependence on the parameters explicitly and which permits good agreement with experiment. This latter result is based on an inviscid-flow approximation for the corner expansion and for reattachment, with viscous forces important primarily in a thin sublayer about the dividing streamline. A prediction of the pressure distribution at reattachment is given and the result is compared with experimental pressure distributions.

Type
Research Article
Copyright
© 1973 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1956 J. Fluid Mech. 1, 388.
Batt, R. G. & Kubota, T. 1968 A.I.A.A. J. 6, 2077.
Berger, S. A. 1971 Laminar Wakes. Elsevier.
Burggraf, O. 1970 U.S. Air Force Aerospace Res. Lab. Rep. ARL 70–0275.
Chang, C. J. & Messiter, A. F. 1968 University of Michigan Willow Run Lab. Rep. 8430–2-T.
Chapman, D. R., Kuehn, D. M. & Larson, H. K. 1958 N.A.C.A. Rep. no. 1356.
Charwat, A. & Yakura, J. 1958 J. Aero. Sci. 25, 122.
Cole, J. D. & Aroesty, J. 1967 Int. J. Heat & Mass Transfer, 11, 1167.
Denison, M. R. & Baum, E. 1963 A.I.A.A. J. 1, 342.
Feo, A. 1970 Ph.D. thesis, Dept. of Aerospace Engineering, University of Michigan.
Goldstein, S. 1930 Proc. Camb. Phil. Soc. 26, 1.
Golik, R. J., Webb, W. H. & Lees, L. 1967 A.I.A.A. Paper, no. 67–61.
Hakkinen, R. J., Greber, I., Trilling, L. & Abarbanel, S. S. 1959 N.A.S.A. Memo. 2–18-59W.
Hama, F. R. 1968 A.I.A.A. J. 6, 212.
Holt, M. & Meng, J. C. S. 1968 Proc. 19th Int. Astronautical Cong. p. 385. Pergamon.
Hough, G. R. 1972 Ph.D. thesis, Dept. of Aerospace Engineering, University of Michigan.
Messiter, A. F., Feo, A. & Melnik, R. E. 1971 A.I.A.A. J. 9, 1197.
Rom, J. 1966 J. Spacecraft, 3, 1504.
Rott, N. & Hakkinen, R. J. 1965 Douglas Aircraft Co. Rep. SM-47809.
Stewartson, K. & Williams, P. G. 1969 Proc. Roy. Soc. A, 312, 181.
Su, M. W. & Wu, J. M. 1971 A.I.A.A. J. 9, 1429.
Weiss, R. 1967 A.I.A.A. J. 5, 2142.