Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T06:06:00.631Z Has data issue: false hasContentIssue false

Behaviour of a natural laminar flow aerofoil in flight through atmospheric turbulence

Published online by Cambridge University Press:  16 February 2015

Andreas D. Reeh*
Affiliation:
Institute of Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, D-64387 Darmstadt, Germany
C. Tropea
Affiliation:
Institute of Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, D-64387 Darmstadt, Germany
*
Email address for correspondence: andreas.reeh@gmx.net

Abstract

Atmospheric turbulence is encountered frequently in flight and it creates oncoming flow disturbances of varying direction and magnitude for aircraft passing through turbulent zones. The unique measurement set-up on a motorised glider enables the investigation of the flow processes acting on a laminar wing section in flight through atmospheric turbulence. The expected quasi-steady aerofoil characteristics are deduced from an investigation of boundary-layer transition under calm flight conditions. Spanwise frequency–wavenumber spectra and comparisons with linear stability theory (LST) yield insight into the linear and weakly nonlinear stages of transition. Simultaneous measurement of the oncoming flow, characteristic flow quantities on the wing section and the motion of the aerofoil enables correlations between these quantities and provides insight into the unsteady flight physics. Emphasis is placed on the response of laminar–turbulent transition to moderate free-stream turbulence on both sides of the wing section. On the lower side of the aerofoil significant and rapid upstream fluctuations of transition are observed, which correspond closely to variations in the pressure distribution. Wavelet analysis is applied to gain insight into the composition of these streamwise excursions of the transition front in the time-pseudo-frequency domain. It is shown that they are driven by rapid transient base-flow changes and that transition is initiated by a short growth stage of Tollmien–Schlichting (TS) waves.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bech, K. H., Henningson, D. S. & Henkes, R. A. W. M. 1998 Linear and nonlinear development of localized disturbances in zero and adverse pressure gradient boundary-layers. Phys. Fluids.CrossRefGoogle Scholar
Bendat, J. S. & Piersol, A. G. 2010 Random Data Analysis and Measurement Procedures, 4th edn. Wiley.CrossRefGoogle Scholar
Bernardini, C., Benton, S. I., Chen, J. P. & Bons, J. P.2013 Investigation of pulsed blowing control mechanism using wavelet analysis and accoustic excitation. AIAA Paper AIAA-2013-0850.Google Scholar
Bertolotti, F. P.1991 Linear and nonlinear stability of boundary layers with streamwise varying properties. PhD thesis, Ohio State University.Google Scholar
Bertolotti, F. P. 1997 Response of the Blasius boundary layer to free-stream vorticity. Phys. Fluids 9, 22862299.Google Scholar
Bertolotti, F. P. 1999 Effect of atmospheric turbulence on a laminar boundary layer. Tech. Soaring 25 (2), 154159; presented at the 26th OSTIV Congress, Bayreuth, Germany.Google Scholar
Bisplinghoff, R. L., Holt, A. & Halfman, R. L. 1996 Thin airfoils oscillating in incompressible flow. In Aeroelasticity, chap. 5.6, pp. 251281. Dover.Google Scholar
Boiko, A. V., Grek, G. R., Dovgal, A. V. & Kozlov, V. V. 2002 The Origin of Turbulence in Near-Wall Flows. Springer.CrossRefGoogle Scholar
Boiko, A. V., Westin, K. J. A., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 2. The role of TS-waves in the transition process. J. Fluid Mech. 281, 219245.CrossRefGoogle Scholar
Bradshaw, P. 1971 An Introduction to Turbulence and its Measurement. Pergamon.Google Scholar
Breuer, K. S., Cohen, J. & Haritonidis, J. H. 1997 The late stages of transition induced by a low-amplitude wavepacket in a laminar boundary layer. J. Fluid Mech. 340, 395411.Google Scholar
Carpenter, A. L., Saric, W. & Reed, H. L. 2010 Roughness receptivity studies in a 3-D boundary layer – flight tests and computations. In Seventh IUTAM Symposium on Laminar–Turbulent Transition (ed. Schlatter, P. & Henningson, D. S.), IUTAM Bookseries, vol. 18, pp. 105110. Springer.CrossRefGoogle Scholar
Cebeci, T., Carr, L. W. & Jang, H. M.1989 An interactive boundary-layer procedure for oscillating airfoils including transition effects. AIAA Paper AIAA-89-0020.CrossRefGoogle Scholar
Cebeci, T. & Cousteix, J. 2005 Modeling and Computation of Boundary-Layer Flows. Springer.Google Scholar
Cohen, J., Breuer, K. S. & Haritonidis, J. H. 1991 On the evolution of a wave packet in a laminar boundary layer. J. Fluid Mech. 225, 575606.Google Scholar
Crouch, J. D. 1992a Localized receptivity of boundary layers. Phys. Fluids 4 (7).Google Scholar
Crouch, J. D. 1992b Non-localized receptivity of boundary layers. J. Fluid Mech. 244, 567581.CrossRefGoogle Scholar
Damion, J. P. 1994 Means of dynamic calibration for pressure transducers. Metrologia 30, 743746.Google Scholar
Dietz, A. J. 1999 Local boundary-layer receptivity to a convected free-stream disturbance. J. Fluid Mech. 378, 291317.Google Scholar
Drela, M. 1989 XFOIL: an analysis and design system for low Reynolds number airfoils. In Low Reynolds Number Aerodynamics (ed. Mueller, T. J.), Lecture Notes in Engineering, vol. 54, pp. 112. Springer.CrossRefGoogle Scholar
Elofsson, P. A. & Alfredsson, P. H. 1998 An experimental study of oblique transition in plane Poiseuille flow. J. Fluid Mech. 358, 177202.CrossRefGoogle Scholar
Elofsson, P. A. & Alfredsson, P. H. 2000 An experimental study of oblique transition in a Blasius boundary layer flow. Eur. J. Mech. (B/Fluids) 19, 615636.CrossRefGoogle Scholar
Erb, P.2002 Untersuchung der Grenzschichttransition im Flugversuch. PhD thesis, Technische Universität Darmstadt.Google Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395457.Google Scholar
Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition induced by free-stream turbulence. J. Fluid Mech. 527, 125.CrossRefGoogle Scholar
Freymuth, P. & Fingerson, L. M. 1997 Hot-wire anemometry at very high frequencies: effect of electronic noise. Meas. Sci. Technol. 8, 115116.CrossRefGoogle Scholar
Fung, Y. C. 2008 Transient loads, gusts. In An Introduction to the Theory of Aeroelasticity, chap. 8, pp. 272305. Dover.Google Scholar
Gaster, M. & Grant, I. 1975 A theoretical model for the development of a wave packet in a laminar boundary-layer. Proc. R. Soc. Lond. A 347, 271289.Google Scholar
Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for bypass transition from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250, 169207.Google Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.Google Scholar
Herbert, T., Stuckert, G. K. & Esfahian, V.1993 Effects of free-stream turbulence on boundary-layer transition. AIAA Paper AIAA-93-0488.Google Scholar
Herr, S.2003 Experimental investigation of airfoil boundary-layer receptivity and a method for the characterization of the relevant free-stream disturbances. PhD thesis, Universität Suttgart.Google Scholar
van Hest, B.1996 Laminar-turbulent transition in boundary layers with adverse pressure gradient. PhD thesis, TU Delft.Google Scholar
Hill, P. G. & Stenning, A. H. 1960 Laminar boundary layers in oscillatory flow. Trans. ASME J. Basic Engng 82 (2), 593607.CrossRefGoogle Scholar
Horstmann, K. H., Quast, A. & Redeker, G. 1989 Flight and wind-tunnel investigations on boundary-layer transition. J. Aircraft 27 (2), 146150.CrossRefGoogle Scholar
Hudgins, L., Friehe, C. A. & Mayer, M. E. 1993 Wavelet trransforms and atmospheric turbulence. Phys. Rev. Lett. 71, 32793282.Google Scholar
ISA 2002 A guide for the dynamic calibration of pressure transducers. Tech. Rep. ISA-37.16.01-2002. The Instrumentation, Systems, and Automation Society.Google Scholar
Kachanov, Y. 1994 Physical mechanisms of laminar–boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.Google Scholar
Kachanov, Y. 2000 Three-dimensional receptivity of boundary layers. Eur. J. Mech. (B/Fluids) 19 (5), 723744.Google Scholar
Kachanov, Y. & Levchenko, V. Y. 1984 The resonant interaction of disturbances at laminar–turbulent transition in a boundary layer. J. Fluid Mech. 138, 209247.Google Scholar
Keller, H. B. 1978 Numerical methods in boundary-layer theory. Annu. Rev. Fluid Mech. 10, 417433.CrossRefGoogle Scholar
Kenchi, T., Matsubara, M. & Toshihiko, I. 2008 Laminar turbulent transition in a boundary layer subjected to weak free stream turbulence. J. Fluid Sci. Technol. 3 (1), 5667.Google Scholar
Kendall, J. M.1984 Experiments on the generation of Tollmien–Schlichting waves in a flat plate boundary layer by weak freestream turbulence. AIAA Paper AIAA-84-0011.Google Scholar
Kendall, J. M.1985 Experimental investigation of disturbances produced in a pre-transitional laminar boundary layer. AIAA Paper AIAA-85-1695.CrossRefGoogle Scholar
Kendall, J. M.1998 Experiments on boundary-layer receptivity to free-stream turbulence. AIAA Paper AIAA-98-0530.Google Scholar
King, R. A. & Breuer, K. S. 2001 Oblique transition in a laminar Blasius boundary layer. J. Fluid Mech. 453, 177200.Google Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12 (2), 134.CrossRefGoogle Scholar
Kloker, M.1993 Direkte numerische simulation des laminar–turbulenten strömungsumschlages in einer stark verzögerten grenzschicht. PhD thesis, Universität Stuttgart.Google Scholar
Kloker, M. 1995 Direct numerical simulation of boundary-layer transition with strong adverse pressure gradient. In Laminar–Turbulent Transition, pp. 481488. Springer.CrossRefGoogle Scholar
Köhler, M.2011 Development and implementation of a method for solving the laminar boundary-layer equations in airfoil flows. Master Thesis, TU Darmstadt http://tuprints.ulb.tu-darmstadt.de/3173/.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. USSR Acad. Sci. 30, 299303; (in Russian), translated into English by V. Levin. Proc. R. Soc. A 434 (1991): 9–13.Google Scholar
Leishman, J. G., Rycroft, M. J. & Shyy, W. 2006 Unsteady Airfoils. In Principles Helicopter Aerodynamics, 2nd edn., chap. 8, pp. 423523. Cambridge University Press.Google Scholar
Lighthill, M. J. 1954 The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. R. Soc. Lond. A 224 (9), 123.Google Scholar
Loehrke, R. I., Morkovin, M. V. & Fejer, A. A. 1975 Review – transition in nonreversing oscillating boundary layers. Trans. ASME J. Fluids Engng 97, 534548.CrossRefGoogle Scholar
MacCready, P. B. Jr. 1962 The inertial subrange of atmospheric turbulence. J. Geophys. Res. 67 (3), 10511059.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.Google Scholar
Matsubara, M., Takaichi, K. & Kenchi, T. 2010 Experimental study of boundary layer transition subjected to weak free stream turbulence. In Seventh IUTAM Symposium on Laminar–Turbulent Transition, pp. 277282. Springer.Google Scholar
McCroskey, W. J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14, 285311.Google Scholar
Medeiros, M. A. F. & Gaster, M. 1999 The production of subharmonic waves in the nonlinear evolution of wavepackets in boundary layers. J. Fluid Mech. 399, 301318.CrossRefGoogle Scholar
Mish, P. F. & Devenport, W. J.2003 An experimental investigation of unsteady surface pressure on an airfoil in turbulence. NASA Tech. Rep. 20030032963.Google Scholar
Nishioka, M. & Morkovin, M. V. 1986 Boundary-layer receptivity to unsteady pressure gradients: experiments and overview. J. Fluid Mech. 171, 219261.CrossRefGoogle Scholar
Obremski, H. J. & Fejer, A. A. 1967 Transition in oscillating boundary layer flows. J. Fluid Mech. 29, 93111.Google Scholar
Obremski, H. J. & Morkovin, M. V. 1969 Application of quasi-steady stability model to periodic boundary-layer flows. AIAA J. 7 (7), 12981301.Google Scholar
Patel, M. H. 1975 On laminar boundary layers in oscillatory flow. Proc. R. Soc. Lond. A 347 (1648), 99123.Google Scholar
de Paula, I. B., Würz, W., Krämer, E., Borodulin, V. I. & Kachanov, Y. S. 2013 Weakly nonlinear stages of boundary-layer transition initiated by modulated Tollmien–Schlichting waves. J. Fluid Mech. 792, 571615.CrossRefGoogle Scholar
Peltzer, I.2004 Flug-und windkanalexperimente zur rumlichen entwicklung von Tollmien-Schlichting-instabilitten in einer flgelgrenzschicht. PhD thesis, Technische Universitt Berlin.Google Scholar
Peltzer, I. 2008 Comparative in-flight and wind tunnel investigation of the development of natural and controlled disturbances in the laminar boundary layer of an airfoil. Exp. Fluids 44, 961972.Google Scholar
Peltzer, I. & Nitsche, W. 2004 Experimental investigations of natural and controlled transition on a laminar flow airfoil. In Recent Results in Laminar–Turbulent Transition, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 86, pp. 269280. Springer.CrossRefGoogle Scholar
Perls, T. A., Miles, D. O. & Wilner, L. B. 1960 Sinusoidal pressure generator with wide amplitude and frequency ranges. J. Acoust. Soc. Am. 32, 274281.Google Scholar
Pope, S. B. 2000 The scales of turbulent motion. In Turbulent Flows, chap. 6., Cambridge University Press.Google Scholar
Reeh, A. D. 2009 Development and implementation of a method for linear stability analysis of natural and manipulated boundary-layer flows. In Proceedings of the DGLR Congress 2009, DGLR.Google Scholar
Reeh, A. D.2014 Natural laminar flow airfoil behavior in cruise flight through atmospheric turbulence. PhD thesis, TU Darmstadt, http://tuprints.ulb.tu-darmstadt.de/id/eprint/4123.Google Scholar
Reeh, A., Weismüller, M. & Tropea, C. 2013a Flight Measurements under Turbulent Atmospheric Conditions, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 124, pp. 213221. Springer.Google Scholar
Reeh, A. D., Weismüller, M. & Tropea, C.2013b Free-flight investigation of transition under turbulent conditions on a laminar wing glove. In Proceedings of the 51st AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper, AIAA-2013-0994.Google Scholar
Reeh, A. D., Weismüller, M. & Tropea, C. 2014 In-flight investigation of transition under turbulent conditions on a laminar wing glove. AIAA J. 52 (10), 21762189.Google Scholar
Riedel, H. & Sitzmann, S. 1998 In-flight investigation of atmospheric turbulence. Aerosp. Sci. Technol. 5, 301319.CrossRefGoogle Scholar
Runyan, L. J. & George-Falvy, D.1979 Amplification factors corresponding to transition on an unswept wing in free flight and on a swept wing in wind tunnel. AIAA Paper AIAA-79-0267.Google Scholar
Saric, W., Carpenter, A. L. & Reed, H. 2011 Passive control of transition in three-dimensional boundary layers, with emphasis on discrete roughness elements. Proc. R. Soc. Lond. A 369, 13521364.Google Scholar
Saric, W., Reed, H. & Kerschen, E. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34, 291319.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Schrader, L.-U., Brandt, L., Mavriplis, C. & Henningson, D. S. 2010 Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge. J. Fluid Mech. 653, 245271.Google Scholar
Schubauer, G. B. & Skramstad, H. K.1948 Laminar–boundary-layer oscillations and transition on a flat plate. NACA Tech. Rep. 909.Google Scholar
Seitz, A.2007 Freiflug-Experimente zum Übergang laminar–turbulent in einer Tragflügelgrenzschicht. DLR Forschungsbericht 2007-01.Google Scholar
Seitz, A. & Horstmann, K. H. 2006 In-flight investigation of Tollmien–Schlichting waves. In IUTAM Symposium on One Hundred Years of Boundary Layer Research (ed. Meier, G. E. A. & Sreenivasan, K. R.), Solid Mechanics and its Applications, vol. 129, pp. 115124. Springer.Google Scholar
Sheih, C. M., Tennekes, H. & Lumley, J. L. 1971 Airborne measurement of the small-scale structure of atmospheric turbulence. Phys. Fluids 201 (14), 201215.Google Scholar
Studer, G., Arnal, D., Houdeville, R. & Seraudie, A. 2006 Experimental and numerical analysis of unsteady boundary layer transition using continuous wavelet transfrom. In Sixth IUTAM Symposium on Laminar–Turbulent Transition (ed. Govindarajan, R.), IUTAM Bookseries, vol. 78, pp. 275280. Springer.CrossRefGoogle Scholar
Stull, R. D. 1988 An Introduction to Boundary Layer Meteorology. Kluwer.Google Scholar
Tani, I. 1969 Boundary-layer transition. Annu. Rev. Fluid Mech. 1, 169196.Google Scholar
Weismüller, M.2011 A new approach to aerodynamic performance of aircraft under turbulent atmospheric conditions. PhD thesis, TU Darmstadt, http://tuprints.ulb.tu-darmstadt.de/2934/.Google Scholar
Westin, K. J. A., Bakchinov, A. A., Kozlov, V. V. & Alfredsson, P. H. 1998 Experiments on localized disturbances in a flat plate boundary layer. Part 1. The receptivity and evolution of a localized free stream disturbance. Eur. J. Mech. (B/Fluids) 17 (6), 823846.Google Scholar
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1: boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.Google Scholar
Wu, X., Steward, P. A. & Cowley, S. J. 2007 On the catalytic role of the phase-locked interaction of Tollmien–Schlichting waves in boundary-layer transition. J. Fluid Mech. 590, 265294.Google Scholar
Würz, W., Sartourius, D., Kloker, M., Borodulin, V. I., Kachanov, Y. S. & Smorodsky, B. V. 2012 Nonlinear instabilities of a non-self-similar boundary layer on an airfoil: experiments, DNS, and theory. Eur. J. Mech. (B/Fluids) 31, 102128.CrossRefGoogle Scholar
Wyngaard, J. C. 1992 Atmospheric turbulence. Annu. Rev. Fluid Mech. 24, 205233.Google Scholar
Yeo, K. S., Zhao, X., Wang, Z. Y. & Ng, K. C. 2010 DNS of wave packet evolution in a Blasius boundary layer. J. Fluid Mech. 652, 333372.Google Scholar
Zanin, B. Y. 1985 Transition at natural conditions and comparison with the results of wind-tunnel studies. In Laminar–Turbulent Transition, pp. 541546. Springer.Google Scholar
Zanin, B. Y. 1989 Transition to turbulence on a wing in flight and in a wind tunnel at the same Reynolds numbers. Sov. J. Appl. Phys. 3 (2), 5356.Google Scholar
Zanin, B. Y.2008 Some hypotheses about occurrence of turbulence in a pre-separated boundary layer. In Proceedings of the International Conference on Methods of Aerophysical Research, ICMAR 2008, pp. 1–6.Google Scholar