Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T05:50:58.320Z Has data issue: false hasContentIssue false

Bouncing phase variations in pilot-wave hydrodynamics and the stability of droplet pairs

Published online by Cambridge University Press:  17 May 2019

Miles M. P. Couchman
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Sam E. Turton
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
John W. M. Bush*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: bush@math.mit.edu

Abstract

We present the results of an integrated experimental and theoretical investigation of the vertical motion of millimetric droplets bouncing on a vibrating fluid bath. We characterize experimentally the dependence of the phase of impact and contact force between a drop and the bath on the drop’s size and the bath’s vibrational acceleration. This characterization guides the development of a new theoretical model for the coupling between a drop’s vertical and horizontal motion. Our model allows us to relax the assumption of constant impact phase made in models based on the time-averaged trajectory equation of Moláček and Bush (J. Fluid Mech., vol. 727, 2013b, pp. 612–647) and obtain a robust horizontal trajectory equation for a bouncing drop that accounts for modulations in the drop’s vertical dynamics as may arise when it interacts with boundaries or other drops. We demonstrate that such modulations have a critical influence on the stability and dynamics of interacting droplet pairs. As the bath’s vibrational acceleration is increased progressively, initially stationary pairs destabilize into a variety of dynamical states including rectilinear oscillations, circular orbits and side-by-side promenading motion. The theoretical predictions of our variable-impact-phase model rationalize our observations and underscore the critical importance of accounting for variability in the vertical motion when modelling droplet–droplet interactions.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbelaiz, J., Oza, A. U. & Bush, J. W. M. 2018 Promenading pairs of walking droplets: dynamics and stability. Phys. Rev. Fluids 3 (1), 013604.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Borghesi, C., Moukhtar, J., Labousse, M., Eddi, A., Fort, E. & Couder, Y. 2014 Interaction of two walkers: wave-mediated energy and force. Phys. Rev. E 90 (6), 063017.Google Scholar
de Broglie, L. 1956 Une Tentative d’Interprétation Causale et non Linéaire de la Mécanique Ondulatoire: la théorie de la double solution. Gauthier-Villars.Google Scholar
Bush, J. W. M. 2015a The new wave of pilot-wave theory. Phys. Today 68 (8), 4753.Google Scholar
Bush, J. W. M. 2015b Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269292.Google Scholar
Bush, J. W. M., Couder, Y., Gilet, T., Milewski, P. A. & Nachbin, A. 2018 Introduction to focus issue on hydrodynamic quantum analogs. Chaos 28 (9), 096001.Google Scholar
Bush, J. W. M., Oza, A. U. & Moláček, J. 2014 The wave-induced added mass of walking droplets. J. Fluid Mech. 755, R7.Google Scholar
Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005a From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17), 177801.Google Scholar
Couder, Y., Protiere, S., Fort, E. & Boudaoud, A. 2005b Dynamical phenomena: walking and orbiting droplets. Nature 437 (7056), 208.Google Scholar
Damiano, A. P., Brun, P-T., Harris, D. M., Galeano-Rios, C. A. & Bush, J. W. M. 2016 Surface topography measurements of the bouncing droplet experiment. Exp. Fluids 57 (10), 163.Google Scholar
Dubertrand, R., Hubert, M., Schlagheck, P., Vandewalle, N., Bastin, T. & Martin, J. 2016 Scattering theory of walking droplets in the presence of obstacles. New J. Phys. 18 (11), 113037.Google Scholar
Durey, M. & Milewski, P. A. 2017 Faraday wave–droplet dynamics: discrete-time analysis. J. Fluid Mech. 821, 296329.Google Scholar
Eddi, A., Boudaoud, A. & Couder, Y. 2011a Oscillating instability in bouncing droplet crystals. Europhys. Lett. 94 (2), 20004.Google Scholar
Eddi, A., Decelle, A., Fort, E. & Couder, Y. 2009 Archimedean lattices in the bound states of wave interacting particles. Europhys. Lett, 87 (5), 56002.Google Scholar
Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. 2011b Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433463.Google Scholar
Eddi, A., Terwagne, D., Fort, E. & Couder, Y. 2008 Wave propelled ratchets and drifting rafts. Europhys. Lett. 82 (4), 44001.Google Scholar
Faria, L. M. 2017 A model for Faraday pilot waves over variable topography. J. Fluid Mech. 811, 5166.Google Scholar
Filoux, B., Hubert, M. & Vandewalle, N. 2015 Strings of droplets propelled by coherent waves. Phys. Rev. E 92 (4), 041004.Google Scholar
Galeano-Rios, C. A., Couchman, M. M. P., Caldairou, P. & Bush, J. W. M. 2018 Ratcheting droplet pairs. Chaos 28 (9), 096112.Google Scholar
Galeano-Rios, C. A., Milewski, P. A. & Vanden-Broeck, J.-M. 2017 Non-wetting impact of a sphere onto a bath and its application to bouncing droplets. J. Fluid Mech. 826, 97127.Google Scholar
Gilet, T., Vandewalle, N. & Dorbolo, S. 2009 Completely inelastic ball. Phys. Rev. E 79 (5), 055201.Google Scholar
Hammond, R. T. 2010 Relativistic particle motion and radiation reaction in electrodynamics. Electron. J. Theoret. Phys. 7 (23), 221258.Google Scholar
Harris, D. M. & Bush, J. W. M. 2015 Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J. Sound Vib. 334, 255269.Google Scholar
Harris, D. M., Liu, T. & Bush, J. W. M. 2015 A low-cost, precise piezoelectric droplet-on-demand generator. Exp. Fluids 56 (4), 83.Google Scholar
Labousse, M., Oza, A. U., Perrard, S. & Bush, J. W. M. 2016 Pilot-wave dynamics in a harmonic potential: quantization and stability of circular orbits. Phys. Rev. E 93 (3), 033122.Google Scholar
Lieber, S. I., Hendershott, M. C., Pattanaporkratana, A. & Maclennan, J. E. 2007 Self-organization of bouncing oil drops: two-dimensional lattices and spinning clusters. Phys. Rev. E 75 (5), 056308.Google Scholar
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22 (1), 143165.Google Scholar
Milewski, P. A., Galeano-Rios, C. A., Nachbin, A. & Bush, J. W. M. 2015 Faraday pilot-wave dynamics: modelling and computation. J. Fluid Mech. 778, 361388.Google Scholar
Moláček, J. & Bush, J. W. M. 2013a Drops bouncing on a vibrating bath. J. Fluid Mech. 727, 582611.Google Scholar
Moláček, J. & Bush, J. W. M. 2013b Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.Google Scholar
Nachbin, A. 2018 Walking droplets correlated at a distance. Chaos 28 (9), 096110.Google Scholar
Nachbin, A., Milewski, P. A. & Bush, J. W. M. 2017 Tunneling with a hydrodynamic pilot-wave model. Phys. Rev. Fluids 2 (3), 034801.Google Scholar
Oza, A. U., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014a Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech. 744, 404429.Google Scholar
Oza, A. U., Rosales, R. R. & Bush, J. W. M. 2013 A trajectory equation for walking droplets: hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552570.Google Scholar
Oza, A. U., Siéfert, E., Harris, D. M., Moláček, J. & Bush, J. W. M. 2017 Orbiting pairs of walking droplets: dynamics and stability. Phys. Rev. Fluids 2, 053601.Google Scholar
Oza, A. U., Wind-Willassen, Ø., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014b Pilot-wave hydrodynamics in a rotating frame: exotic orbits. Phys. Fluids 26 (8), 082101.Google Scholar
Perrard, S. & Labousse, M. 2018 Transition to chaos in wave memory dynamics in a harmonic well: deterministic and noise-driven behavior. Chaos 28 (9), 096109.Google Scholar
Protière, S., Bohn, S. & Couder, Y. 2008 Exotic orbits of two interacting wave sources. Phys. Rev. E 78 (3), 036204.Google Scholar
Protière, S., Boudaoud, A. & Couder, Y. 2006 Particle–wave association on a fluid interface. J. Fluid Mech. 554, 85108.Google Scholar
Protière, S., Couder, Y., Fort, E. & Boudaoud, A. 2005 The self-organization of capillary wave sources. J. Phys.: Condens. Matter 17 (45), S3529S3535.Google Scholar
Pucci, G., Sáenz, P. J., Faria, L. M. & Bush, J. W. M. 2016 Non-specular reflection of walking droplets. J. Fluid Mech. 804, R3.Google Scholar
Sáenz, P. J., Pucci, G., Goujon, A., Cristea-Platon, T., Dunkel, J. & Bush, J. W. M. 2018 Spin lattices of walking droplets. Phys. Rev. Fluids 3 (10), 100508.Google Scholar
Tadrist, L., Sampara, N., Schlagheck, P. & Gilet, T. 2018a Interaction of two walkers: perturbed vertical dynamics as a source of chaos. Chaos 28 (9), 096113.Google Scholar
Tadrist, L., Shim, J.-B., Gilet, T. & Schlagheck, P. 2018b Faraday instability and subthreshold Faraday waves: surface waves emitted by walkers. J. Fluid Mech. 848, 906945.Google Scholar
Terwagne, D., Ludewig, F., Vandewalle, N. & Dorbolo, S. 2013 The role of the droplet deformations in the bouncing droplet dynamics. Phys. Fluids 25 (12), 122101.Google Scholar
Turton, S. E., Couchman, M. M. P. & Bush, J. W. M. 2018 A review of the theoretical modeling of walking droplets: towards a generalized pilot-wave framework. Chaos 28 (9), 096111.Google Scholar
Walker, J. 1978 The amateur scientist. Drops of liquid can be made to float on liquid. What enables them to do so? Sci. Am. 238 (6), 151.Google Scholar
Wind-Willassen, Ø., Moláček, J., Harris, D. M. & Bush, J. W. M. 2013 Exotic states of bouncing and walking droplets. Phys. Fluids 25 (8), 082002.Google Scholar