Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T15:50:44.378Z Has data issue: false hasContentIssue false

Comparison between super-hydrophobic, liquid infused and rough surfaces: a direct numerical simulation study

Published online by Cambridge University Press:  29 April 2019

Isnardo Arenas
Affiliation:
Departamento de ciencias básicas, Unidades Tecnológicas de Santander, Bucaramanga, Colombia
Edgardo García
Affiliation:
Department of Mechanical Engineering, The University of Texas at Dallas, USA
Matthew K. Fu
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, USA
Paolo Orlandi
Affiliation:
Dipartimento di Meccanica ed Aeronautica, Universitá di Roma La Sapienza, Italy
Marcus Hultmark
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, USA
Stefano Leonardi*
Affiliation:
Department of Mechanical Engineering, The University of Texas at Dallas, USA
*
Email address for correspondence: stefano.leonardi@utdallas.edu

Abstract

Direct numerical simulations of two superposed fluids in a channel with a textured surface on the lower wall have been carried out. A parametric study varying the viscosity ratio between the two fluids has been performed to mimic both idealised super-hydrophobic and liquid-infused surfaces and assess its effect on the frictional, form and total drag for three different textured geometries: longitudinal square bars, transversal square bars and staggered cubes. The interface between the two fluids is assumed to be slippery in the streamwise and spanwise directions and not deformable in the vertical direction, corresponding to the ideal case of infinite surface tension. To identify the role of the fluid–fluid interface, an extra set of simulations with a single fluid has been carried out. Comparison with the cases with two fluids reveals the role of the interface in suppressing turbulent transport between the lubricating layer and the overlying flow decreasing the overall drag. In addition, the drag and the maximum wall-normal velocity fluctuations were found to be highly correlated for all the surface configurations, whether they reduce or increase the drag. This implies that the structure of the near-wall turbulence is dominated by the total shear and not by the local boundary condition of the super-hydrophobic, liquid infused or rough surfaces.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burattini, P., Leonardi, S., Orlandi, P. & Antonia, R. A. 2008 Reynolds stress analysis of controlled wall-bounded turbulence. J. Fluid Mech. 600, 403426.Google Scholar
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.Google Scholar
Crawford, H. & Karniadakis, G. E.1996 Reynolds stress analysis of controlled wall-bounded turbulence. AIAA Paper 96-2008.Google Scholar
Daniello, R. J., Waterhouse, N. E. & Rothstein, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21 (8), 085103.Google Scholar
Dean, B. & Bhushan, B. 2010 Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil. Trans. R. Soc. Lond. A 368 (1929), 47754806.10.1098/rsta.2010.0201Google Scholar
Epstein, A. K., Wong, T.-S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. 2012 From the Cover: Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. USA 109 (33), 1318213187.Google Scholar
Fu, M. K., Arenas, I., Leonardi, S. & Hultmark, M. 2017 Liquid-infused surfaces as a passive method of turbulent drag reduction. J. Fluid Mech. 824, 688700.Google Scholar
Fukagata, K., Kasagi, N. & Koumoutsakos, P. 2006 A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18 (5), 051703.Google Scholar
García-Cartagena, E. J., Arenas, I., Bernardini, M. & Leonardi, S. 2018 Dependence of the drag over super hydrophobic and liquid infused surfaces on the textured surface and Weber number. Flow Turbul. Combust. 100 (4), 945960.Google Scholar
García-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369 (1940), 14121427.Google Scholar
Goldstein, D. B. & Tuan, T. C. 1998 Secondary flow induced by riblets. J. Fluid Mech. 363, 115151.10.1017/S0022112098008921Google Scholar
Gose, J. W., Golovin, K., Boban, M., Mabry, J. M., Tuteja, A., Perlin, M. & Ceccio, S. L. 2018 Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 845, 560580.Google Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.Google Scholar
Jelly, T. O. & Busse, A. 2018 Reynolds and dispersive shear stress contributions above highly skewed roughness. J. Fluid Mech. 852, 710724.Google Scholar
Jelly, T. O., Jung, S. Y. & Zaki, T. A. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26 (9), 095102.Google Scholar
Jung, T., Choi, H. & Kim, J. 2016 Effects of the air layer of an idealized superhydrophobic surface on the slip length and skin-friction drag. J. Fluid Mech. 790, R1.Google Scholar
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489 (489), 5577.Google Scholar
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 5200. J. Fluid Mech. 774, 395415.Google Scholar
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.Google Scholar
Leonardi, S., Orlandi, P. & Antonia, R. A. 2005 A method for determining the frictional velocity in a turbulent channel flow with roughness on the bottom wall. Exp. Fluids 38, 796800.Google Scholar
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R. A. 2015 Heat transfer in a turbulent channel flow with square bars or circular rods on one wall. J. Fluid Mech. 776, 512530.10.1017/jfm.2015.344Google Scholar
Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L. & Antonia, R. A. 2003 Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229238.Google Scholar
Li, Y., Alame, K. & Mahesh, K. 2017 Feature-resolved computational and analytical study of laminar drag reduction by superhydrophobic surfaces. Phy. Rev. Fluids 2, 054002.Google Scholar
Ling, H., Srinivasan, S., Golovin, K., Mckinley, G. H., Tuteja, A. & Katz, J. 2016 High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J. Fluid Mech. 801, 670703.10.1017/jfm.2016.450Google Scholar
Martell, M. B., Rothstein, J. P. & Perot, J. B. 2010 An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys. Fluids 22 (6), 113.10.1063/1.3432514Google Scholar
Min, T. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.Google Scholar
Orlandi, P. 2000 Fluid Flow Phenomena, 1st edn, vol. 55. Springer.10.1007/978-94-011-4281-6Google Scholar
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7, N73.Google Scholar
Park, H., Sun, G. & Kim, C.-J. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.Google Scholar
Park, S.-E., Kim, S., Lee, D.-Y., Kim, E. & Hwang, J. 2013 Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells. J. Mater. Chem. A 1 (45), 14286.Google Scholar
Philip, J. R. 1972 Integral properties of flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23, 960968.Google Scholar
Rastegari, A. & Akhavan, R. 2015 On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773, R4.Google Scholar
Rastegari, A. & Akhavan, R. 2019 On drag reduction scaling and sustainability bounds of superhydrophobic surfaces in high reynolds number turbulent flows. J. Fluid Mech. 864, 327347.Google Scholar
Raupach, M. R. & Shaw, R. H. 1982 Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22 (1), 241258.10.1007/BF00128057Google Scholar
Rosenberg, B. J., Van Buren, T., Fu, M. K. & Smits, A. J. 2016 Turbulent drag reduction over air- and liquid- impregnated surfaces. Phys. Fluids 28 (1), 015103.Google Scholar
Schönecker, C., Baier, T. & Hardt, S. 2014 Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. J. Fluid Mech. 740, 168195.Google Scholar
Seo, J., García-Mayoral, R. & Mani, A. 2015 Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 783, 448473.10.1017/jfm.2015.573Google Scholar
Seo, J., García-Mayoral, R. & Mani, A. 2018 Turbulent flows over superhydrophobic surfaces: flow–induced capillary waves, and robustness of air=-water interfaces. J. Fluid Mech. 835, 4585.Google Scholar
Seo, J. & Mani, A. 2016 On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces. Phys. Fluids 28 (2), 025110.Google Scholar
Shankar, P. N. & Deshpande, M. D. 2000 Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93136.Google Scholar
Srinivasan, S., Kleingartner, J. A., Gilbert, J. B., Cohen, R. E., Milne, A. J. B. & McKinley, G. H. 2015 Sustainable Drag Reduction in Turbulent Taylor-Couette Flows by Depositing Sprayable Superhydrophobic Surfaces. Phys. Rev. Lett. 114 (1), 014501.Google Scholar
Suzuki, Y. & Kasagi, N. 1994 Direct numerical simulation of turbulent flow over riblets. AIAA J. 32, 17811790.Google Scholar
Türk, S., Daschiel, G., Stroh, A., Hasegawa, Y. & Frohnapfel, B. 2014 Turbulent flow over superhydrophobic surfaces with streamwise grooves. J. Fluid Mech. 747, 186217.Google Scholar
Van Buren, T. & Smits, A. J. 2017 Substantial drag reduction in turbulent flow using liquid-infused surfaces. J. Fluids Mech. 827, 19.Google Scholar
Wong, T.-S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. & Aizenberg, J. 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443447.Google Scholar