Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T06:02:40.144Z Has data issue: false hasContentIssue false

Convective instabilities during the solidification of an ideal ternary alloy in a mushy layer

Published online by Cambridge University Press:  18 March 2010

DANIEL M. ANDERSON*
Affiliation:
Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
GEOFFREY B. McFADDEN
Affiliation:
Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
SAM R. CORIELL
Affiliation:
Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
BRUCE T. MURRAY
Affiliation:
Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA
*
Email address for correspondence: danders1@gmu.edu

Abstract

We consider a model for the solidification of an ideal ternary alloy in a mushy layer that incorporates the effects of thermal and solutal diffusion, convection and solidification. Our results reveal that although the temperature and solute fields are constrained to the liquidus surface of the phase diagram, the system still admits double-diffusive modes of instability. Additionally, modes of instability exist even in situations in which the thermal and solute fields are each individually stable from a static point of view. We identify these instabilities for a general model in which the base-state solution and its linear stability are computed numerically. We then highlight these instabilities in a much simpler model that admits an analytical solution.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitta, A., Huppert, H. E. & Worster, M. G. 2001 a Diffusion-controlled solidification of a ternary melt from a cooled boundary. J. Fluid Mech. 432, 201217.CrossRefGoogle Scholar
Aitta, A., Huppert, H. E. & Worster, M. G. 2001 b Solidification in ternary systems. In Interactive Dynamics of Convection and Solidification (ed. Ehrhard, P., Riley, D. S. & Steen, P. H.), pp. 113122. Kluwer.CrossRefGoogle Scholar
Amberg, G. & Homsy, G. M. 1993 Nonlinear analysis of buoyant convection in binary solidification with application to channel formation. J. Fluid Mech. 252, 7998.CrossRefGoogle Scholar
Anderson, D. M. 2003 A model for diffusion-controlled solidification of ternary alloys in mushy layers. J. Fluid Mech. 483, 165197.CrossRefGoogle Scholar
Anderson, D. M. & Schulze, T. P. 2005 Linear and nonlinear convection in solidifying ternary alloys. J. Fluid Mech. 545, 213243.CrossRefGoogle Scholar
Anderson, D. M. & Worster, M. G. 1995 Weakly-nonlinear analysis of convection in a mushy layer during the solidification of binary alloys. J. Fluid Mech. 302, 307331.CrossRefGoogle Scholar
Anderson, D. M. & Worster, M. G. 1996 A new oscillatory instability in a mushy layer during the solidification of binary alloys. J. Fluid Mech. 307, 245267.CrossRefGoogle Scholar
Bloomfield, L. J. & Huppert, H. E. 2003 Solidification and convection of a ternary solution cooled from the side. J. Fluid Mech. 489, 269299.CrossRefGoogle Scholar
Boettinger, W. J., Kattner, U. R., Coriell, S. R., Chang, Y. A. & Mueller, B. A. 1995 Development of multicomponent solidification micromodels using a thermodynamic phase diagram data base. In Modelling of Casting, Welding and Advanced Solidification Processes VII (ed. Cross, M. & Campbell, J.), pp. 649–656. TMS.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.CrossRefGoogle Scholar
Chen, F., Lu, J. W. & Yang, T. L. 1994 Convective instability in ammonium chloride solution directionally solidified from below. J. Fluid Mech. 276, 163187.CrossRefGoogle Scholar
Chung, C. A. & Chen, F. 2000 Onset of plume convection in mushy layers. J. Fluid Mech. 408, 5382.CrossRefGoogle Scholar
Chung, C. A. & Worster, M. G. 2002 Steady-state chimneys in a mushy layer. J. Fluid Mech. 455, 387411.CrossRefGoogle Scholar
Coriell, S. R., Cordes, M. R., Boettinger, W. J. & Sekerka, R. F. 1980 Convective and interfacial instabilities during unidirectional solidification of a binary alloy. J. Cryst. Growth 49, 1328.CrossRefGoogle Scholar
Davis, S. H. 2001 Theory of Solidification. Cambridge University Press.CrossRefGoogle Scholar
Felicelli, S. D., Poirier, D. R. & Heinrich, J. C. 1997 Macrosegregation patterns in multicomponent Ni-base alloys. J. Cryst. Growth 177, 145161.CrossRefGoogle Scholar
Felicelli, S. D., Poirier, D. R. & Heinrich, J. C. 1998 Modeling freckle formation in three dimensions during solidification of multicomponent alloys. Metall. Mat. Trans. B 29, 847855.CrossRefGoogle Scholar
Flynn, T. J. 2009 Linear Stability Analysis of a Solidifying Ternary Alloy. Master's thesis, George Mason University, Fairfax, VA.Google Scholar
Gershuni, G. Z. & Zhukovitskii, E. M. 1980 Instability of a system of horizontal layers of immiscible fluids heated from above. Fluid Dyn. 15, 816822. Originally published in Russian in Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 6, 28–34.CrossRefGoogle Scholar
Griffiths, R. W. 1979 The influence of a third diffusing component upon the onset of convection. J. Fluid Mech. 92, 659670.CrossRefGoogle Scholar
Guba, P. & Worster, M. G. 2006 a Nonlinear oscillatory convection in mushy layers.J. Fluid Mech. 553, 419443.CrossRefGoogle Scholar
Guba, P. & Worster, M. G. 2006 b Free convection in laterally solidifying mushy regions. J. Fluid Mech. 558, 6978.CrossRefGoogle Scholar
Huppert, H. E. & Sparks, R. S. J. 1984 Double-diffusive convection due to crystallization in magmas. Annu. Rev. Earth Planet. Sci. 12, 1137.CrossRefGoogle Scholar
Huppert, H. E. & Turner, J. S. 1981 Double-diffusive convection. J. Fluid Mech. 106, 299329.CrossRefGoogle Scholar
Hurle, D. T. J., Jakeman, E. & Wheeler, A. A. 1982 Effect of solutal convection on the morphological stability of a binary alloy. J. Cryst. Growth 58, 163179.CrossRefGoogle Scholar
Katz, R. F. & Worster, M. G. 2008 Simulation of directional solidification, thermochemical convection, and chimney formation in a Hele–Shaw cell. J. Comput. Phys. 227, 98239840.CrossRefGoogle Scholar
Keller, H. B. 1976 Numerical Solution of Two Point Boundary Value Problems, Regional Conference Series in Applied Mathematics, vol. 24. SIAM.CrossRefGoogle Scholar
Krane, M. J. M. & Incropera, F. P. 1997 Solidification of ternary metal alloys–II. Prediction of convective phenomena and solidification behaviour of Pb–Sb–Sn alloys. Intl J. Heat Mass Transfer 40, 38373847.CrossRefGoogle Scholar
Krane, M. J. M., Incropera, F. P. & Gaskell, D. R. 1998 Solidification of a ternary metal alloy: a comparison of experimental measurements and model predictions in a Pb–Sb–Sn system. Metall. Mat. Trans. A 29, 843853.CrossRefGoogle Scholar
Lan, C. W. & Tu, C. Y. 2000 Morphological instability due to double diffusive convection in directional solidification: the pit formation. J. Cryst. Growth 220, 619630.CrossRefGoogle Scholar
Lupis, C. H. P. 1993 Chemical Thermodynamics of Materials. MIT.Google Scholar
Nandapurkar, P., Poirier, D. R., Heinrich, J. C. & Felicelli, S. 1989 Thermosolutal convection during dendritic solidification of alloys. Part I. Linear stability analysis. Metall. Trans. B 20, 711721.CrossRefGoogle Scholar
Nield, D. A. 1968 Onset of thermohaline convection in a porous medium. Water Resour. Res. 4, 553560.CrossRefGoogle Scholar
Nield, D. A. & Bejan, A. 1998 Convection in Porous Media. Springer.Google Scholar
Perestenko, O. V. & Ingel, L. Kh. 1995 The occurrence of moist ‘anticonvection’ in a water–air system. J. Fluid Mech. 287, 120.CrossRefGoogle Scholar
Poulikakos, D. 1985 The effect of a third diffusing component on the onset of convection in a horizontal porous layer. Phys. Fluids 28, 31723174.CrossRefGoogle Scholar
Roper, S. M., Davis, S. H. & Voorhees, P. W. 2007 Convection in a mushy zone forced by sidewall heat losses. Metall. Mat. Trans. A 38A, 10691079.CrossRefGoogle Scholar
Roper, S. M., Davis, S. H. & Voorhees, P. W. 2008 An analysis of convection in a mushy layer with a deformable permeable interface. J. Fluid Mech. 596, 333352.CrossRefGoogle Scholar
Rudraiah, N. & Vortmeyer, D. 1982 The influence of permeability and of a third diffusing component upon the onset of convection in a porous medium. Intl J. Heat Mass Trans. 25, 457464.CrossRefGoogle Scholar
Schaeffer, R. J. & Coriell, S. R. 1984 Convection-induced distortion of a solid–liquid interface. Metall. Trans. A 15, 21092115.CrossRefGoogle Scholar
Schneider, M. C., Gu, J. P., Beckermann, C., Boettinger, W. J. & Kattner, U. R. 1997 Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification. Metall. Mat. Trans. A 28, 15171531.CrossRefGoogle Scholar
Schulze, T. P. & Worster, M. G. 1998 A numerical investigation of steady convection in mushy layers during the directional solidification of binary alloys. J. Fluid Mech. 356, 199220.CrossRefGoogle Scholar
Schulze, T. P. & Worster, M. G. 1999 Weak convection, liquid inclusions and the formation of chimneys in mushy layers. J. Fluid Mech. 388, 197215.CrossRefGoogle Scholar
Schulze, T. P. & Worster, M. G. 2001 Mushy zones with fully developed chimneys. In Interactive Dynamics of Convection and Solidification (ed. Ehrhard, P., Riley, D. S. & Steen, P. H.), pp. 7180. Kluwer.CrossRefGoogle Scholar
Scott, M. R. & Watts, H. A. 1977 Computational solution of linear two-point boundary value problems via orthonormalization. SIAM J. Numer. Anal. 14, 4070.CrossRefGoogle Scholar
Singh, A. K. & Basu, B. 1995 Mathematical modelling of macrosegregation of iron carbon binary alloy: role of double diffusive convection. Metall. Mater. Trans. B 26, 10691081.CrossRefGoogle Scholar
Smallman, R. E. & Bishop, R. J. 1999 Modern Physical Metallurgy and Materials Engineering. Butterworth-Heinemann.Google Scholar
Thi, H. N., Billia, B. & Jamgotchian, H. 1989 Influence of thermosolutal convection on the solidification front during upwards solidification. J. Fluid Mech. 204, 581597.CrossRefGoogle Scholar
Thompson, A. F., Huppert, H. E. & Worster, M. G. 2003 a A global conservation model for diffusion-controlled solidification of a ternary alloy. J. Fluid Mech. 483, 191197.Google Scholar
Thompson, A. F., Huppert, H. E., Worster, M. G. & Aitta, A. 2003 b Solidification and compositional convection of a ternary alloy. J. Fluid Mech. 497, 167199.CrossRefGoogle Scholar
Trefethen, L. N. 2000 Spectral Methods in Matlab. SIAM.CrossRefGoogle Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.CrossRefGoogle Scholar
Welander, P. 1964 Convective instability in a two-layer fluid heated uniformly from above. Tellus 16, 349358.CrossRefGoogle Scholar
Worster, M. G. 1986 Solidification of an alloy from a cooled boundary. J. Fluid Mech. 167, 481501.CrossRefGoogle Scholar
Worster, M. G. 1992 a Instabilities of the liquid and mushy regions during solidification of alloys. J. Fluid Mech. 237, 649669.CrossRefGoogle Scholar
Worster, M. G. 1992 b The dynamics of mushy layers. In Interactive Dynamics of Convection and Solidification (ed. Davis, S. H., Huppert, H. E., Muller, U. & Worster, M. G.), pp. 113138. Kluwer.CrossRefGoogle Scholar
Worster, M. G. 1997 Convection in mushy layers. Annu. Rev. Fluid Mech. 29, 91122.CrossRefGoogle Scholar
Worster, M. G. 2000 Solidification of fluids. In Perspectives in Fluid Dynamics (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), pp. 393446. Cambridge University Press.Google Scholar