Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T06:54:59.291Z Has data issue: false hasContentIssue false

Coupled lattice Boltzmann method–discrete element method model for gas–liquid–solid interaction problems

Published online by Cambridge University Press:  20 November 2023

Linlin Fei
Affiliation:
Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
Feifei Qin*
Affiliation:
Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland Institute of Extreme Mechanics and School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China
Geng Wang
Affiliation:
Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
Jingwei Huang
Affiliation:
Department of Petroleum Engineering, China University of Geosciences (Wuhan), Wuhan, PR China
Binghai Wen
Affiliation:
Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, PR China
Jianlin Zhao
Affiliation:
Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland College of Petroleum Engineering, China University of Petroleum in Beijing, PR China
Kai H. Luo
Affiliation:
Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
Dominique Derome
Affiliation:
Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
Jan Carmeliet
Affiliation:
Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
*
Email address for correspondence: fqin@nwpu.edu.cn

Abstract

In this paper, we propose a numerical model to simulate gas–liquid–solid interaction problems, coupling the lattice Boltzmann method and discrete element method (LBM–DEM). A cascaded LBM is used to simulate the liquid–gas flow field using a pseudopotential interaction model for describing the liquid–gas multiphase behaviour. A classical DEM resorting to fictitious overlaps between the particles is used to simulate the multiple-solid-particle system. A multiphase fluid–solid two-way coupling algorithm between LBM and DEM is constructed. The model is validated by four benchmarks: (i) single disc sedimentation, (ii) single floating particle on a liquid–gas interface, (iii) sinking of a horizontal cylinder and (iv) self-assembly of three particles on a liquid–gas interface. Our simulations agree well with the numerical results reported in the literature. Our proposed model is further applied to simulate droplet impact on deformable granular porous media at pore scale. The dynamic droplet spreading process, the deformation of the porous media (composed of up to 1277 solid particles) as well as the invasion of the liquid into the pores are well captured, within a wide range of impact Weber number. The droplet spreading dynamics on particles is analysed based on the energy budget, which reveals mechanisms at play, showing the evolution of particle energy, surface energy and viscous dissipation energy. A scaling relation based on the impact Weber number is proposed to describe the maximum spreading ratio.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhaskaran, S., Pandey, D., Surasani, V.K., Tsotsas, E., Vidakovic-Koch, T. & Vorhauer-Huget, N. 2022 LBM studies at pore scale for graded anodic porous transport layer (PTL) of PEM water electrolyzer. Intl J. Hydrogen Energ. 47 (74), 3155131565.CrossRefGoogle Scholar
Blocken, B. & Carmeliet, J. 2015 Impact, runoff and drying of wind-driven rain on a window glass surface: numerical modelling based on experimental validation. Build. Environ. 84, 170180.CrossRefGoogle Scholar
Boutt, D.F., Cook, B.K. & Williams, J.R. 2011 A coupled fluid–solid model for problems in geomechanics: application to sand production. Intl J. Numer. Anal. Meth. Geomech. 35 (9), 9971018.CrossRefGoogle Scholar
Bouzidi, M., Firdaouss, M. & Lallemand, P. 2001 Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13 (11), 34523459.CrossRefGoogle Scholar
Caiazzo, A. 2008 Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn. 8 (1-4), 310.CrossRefGoogle Scholar
Chen, L., He, A., Zhao, J., Kang, Q., Li, Z.-Y., Carmeliet, J., Shikazono, N. & Tao, W.-Q. 2022 Pore-scale modeling of complex transport phenomena in porous media. Prog. Energy Combust. Sci. 88, 100968.CrossRefGoogle Scholar
Connington, K.W., Lee, T. & Morris, J.F. 2015 Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid–gas–particle systems. J. Comput. Phys. 283, 453477.CrossRefGoogle Scholar
Cundall, P.A. & Strack, O.D.L. 1979 A discrete numerical model for granular assemblies. Gèotechnique 29 (1), 4765.CrossRefGoogle Scholar
Delon, G., Terwagne, D., Dorbolo, S., Vandewalle, N. & Caps, H. 2011 Impact of liquid droplets on granular media. Phys. Rev. E 84, 046320.CrossRefGoogle ScholarPubMed
Ding, W.-T. & Xu, W.-J. 2018 Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method. Powder Technol. 335, 301314.CrossRefGoogle Scholar
Fei, L. & Luo, K.H. 2017 Consistent forcing scheme in the cascaded lattice Boltzmann method. Phys. Rev. E 96 (5), 053307.CrossRefGoogle ScholarPubMed
Fei, L., Luo, K.H. & Li, Q. 2018 Three-dimensional cascaded lattice Boltzmann method: improved implementation and consistent forcing scheme. Phys. Rev. E 97 (5), 053309.CrossRefGoogle ScholarPubMed
Fei, L., Qin, F., Zhao, J., Derome, D. & Carmeliet, J. 2023 Lattice Boltzmann modelling of isothermal two-component evaporation in porous media. J. Fluid Mech. 955, A18.CrossRefGoogle Scholar
Fei, L., Yang, J., Chen, Y., Mo, H. & Luo, K.H. 2020 Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice Boltzmann method. Phys. Fluids 32 (10), 103312.CrossRefGoogle Scholar
Filippova, O. & Hänel, D. 1998 Grid refinement for lattice-BGK models. J. Comput. Phys. 147 (1), 219228.CrossRefGoogle Scholar
Gan, Y., Xu, A., Lai, H., Li, W., Sun, G. & Succi, S. 2022 Discrete Boltzmann multi-scale modelling of non-equilibrium multiphase flows. J. Fluid Mech. 951, A8.CrossRefGoogle Scholar
Geier, M., Greiner, A. & Korvink, J.G. 2006 Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E 73 (6), 066705.CrossRefGoogle ScholarPubMed
Guo, Z. & Shu, C. 2013 Lattice Boltzmann Method and its Application in Engineering, vol. 3. World Scientific.CrossRefGoogle Scholar
Guo, Z.-L., Zheng, C.-G. & Shi, B.-C. 2002 Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11 (4), 366.Google Scholar
He, Q., Li, Y., Huang, W., Hu, Y. & Wang, Y. 2019 Phase-field-based lattice Boltzmann model for liquid-gas-solid flow. Phys. Rev. E 100 (3), 033314.CrossRefGoogle ScholarPubMed
He, X. & Doolen, G. 1997 Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. J. Comput. Phys. 134 (2), 306315.CrossRefGoogle Scholar
Hu, H.H., Patankar, N.A. & Zhu, M.Y. 2001 Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169 (2), 427462.CrossRefGoogle Scholar
Hu, K., Jin, C., Guo, Y. & Huang, W. 2011 Biological treatment of wastewater from sugar production process by using three-phase fluidized bed reactor. Intl J. Chem. React. Engng 9 (1).Google Scholar
Huang, H., Sukop, M. & Lu, X. 2015 Multiphase lattice Boltzmann methods: theory and application. Wiley–Blackwell.CrossRefGoogle Scholar
Huang, H.-M. & Chen, X.-P. 2018 Energetic analysis of drop's maximum spreading on solid surface with low impact speed. Phys. Fluids 30 (2), 022106.CrossRefGoogle Scholar
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46 (1), 255272.CrossRefGoogle Scholar
Inamuro, T., Maeba, K. & Ogino, F. 2000 Flow between parallel walls containing the lines of neutrally buoyant circular cylinders. Intl J. Multiphase Flow 26 (12), 19812004.CrossRefGoogle Scholar
Jansen, F. & Harting, J. 2011 From bijels to Pickering emulsions: a lattice Boltzmann study. Phys. Rev. E 83 (4), 046707.CrossRefGoogle ScholarPubMed
Jiang, F., Liu, H., Chen, X. & Tsuji, T. 2022 A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem. J. Comput. Phys. 454, 110963.CrossRefGoogle Scholar
Joshi, A.S. & Sun, Y. 2009 Multiphase lattice Boltzmann method for particle suspensions. Phys. Rev. E 79 (6), 066703.CrossRefGoogle ScholarPubMed
Karlin, I.V., Bösch, F. & Chikatamarla, S.S. 2014 Gibbs’ principle for the lattice-kinetic theory of fluid dynamics. Phys. Rev. E 90 (3), 031302.CrossRefGoogle ScholarPubMed
Karlin, I.V., Ferrante, A. & Öttinger, H.C. 1999 Perfect entropy functions of the lattice Boltzmann method. Europhys. Lett. 47 (2), 182188.CrossRefGoogle Scholar
Katsuragi, H. 2010 Morphology scaling of drop impact onto a granular layer. Phys. Rev. Lett. 104, 218001.CrossRefGoogle ScholarPubMed
Kromkamp, J., van den Ende, D., Kandhai, D., van der Sman, R. & Boom, R. 2006 Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in Couette flow. Chem. Engng Sci. 61 (2), 858873.CrossRefGoogle Scholar
Krueger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E.M. 2016 The Lattice Boltzmann Method: Principles and Practice. Springer.Google Scholar
Laan, N., de Bruin, K.G., Bartolo, D., Josserand, C. & Bonn, D. 2014 Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2 (4), 044018.CrossRefGoogle Scholar
Ladd, A.J.C. 1994 a Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.CrossRefGoogle Scholar
Ladd, A.J.C. 1994 b Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.CrossRefGoogle Scholar
Lallemand, P. & Luo, L.-S. 2000 Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61 (6), 65466562.CrossRefGoogle ScholarPubMed
Lallemand, P. & Luo, L.-S. 2003 Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Phys. Rev. E 68 (3), 036706.CrossRefGoogle ScholarPubMed
Lee, J.B., Derome, D., Dolatabadi, A. & Carmeliet, J. 2016 a Energy budget of liquid drop impact at maximum spreading: numerical simulations and experiments. Langmuir 32 (5), 12791288.CrossRefGoogle ScholarPubMed
Lee, J.B., Laan, N., de Bruin, K.G., Skantzaris, G., Shahidzadeh, N., Derome, D., Carmeliet, J. & Bonn, D. 2016 b Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786, R4.CrossRefGoogle Scholar
Li, Q., Kang, Q.J., Francois, M.M., He, Y.L. & Luo, K.H. 2015 Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. Intl J. Heat Mass Transfer 85, 787796.CrossRefGoogle Scholar
Li, Q., Luo, K.H., Kang, Q.J., He, Y.L., Chen, Q. & Liu, Q. 2016 a Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62105.CrossRefGoogle Scholar
Li, Q., Luo, K.H. & Li, X.J. 2012 Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys. Rev. E 86 (1), 016709.CrossRefGoogle ScholarPubMed
Li, Q., Luo, K.H. & Li, X.J. 2013 Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys. Rev. E 87 (5), 053301.CrossRefGoogle ScholarPubMed
Li, Q., Yu, Y. & Luo, K.H. 2019 Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries. Phys. Rev. E 100 (5), 053313.CrossRefGoogle ScholarPubMed
Li, X., Jiang, F. & Hu, C. 2016 b Analysis of the accuracy and pressure oscillation of the lattice Boltzmann method for fluid–solid interactions. Comput. Fluids 129, 3352.CrossRefGoogle Scholar
Liu, H., Kang, Q., Leonardi, C.R., Schmieschek, S., Narváez, A., Jones, B.D., Williams, J.R., Valocchi, A.J. & Harting, J. 2016 Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci. 20 (4), 777805.CrossRefGoogle Scholar
Liu, H.-R., Gao, P. & Ding, H. 2017 Fluid–structure interaction involving dynamic wetting: 2D modeling and simulations. J. Comput. Phys. 348, 4565.CrossRefGoogle Scholar
Luding, S., Clément, E., Blumen, A., Rajchenbach, J. & Duran, J. 1994 Anomalous energy dissipation in molecular-dynamics simulations of grains: the “detachment” effect. Phys. Rev. E 50 (5), 4113.CrossRefGoogle ScholarPubMed
Mei, R., Luo, L.-S. & Shyy, W. 1999 An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155 (2), 307330.CrossRefGoogle Scholar
Onishi, J., Kawasaki, A., Chen, Y. & Ohashi, H. 2008 Lattice Boltzmann simulation of capillary interactions among colloidal particles. Comput. Maths Applics. 55 (7), 15411553.CrossRefGoogle Scholar
Panda, D., Supriya, B., Kharaghani, A., Tsotsas, E. & Surasani, V.K. 2020 Lattice Boltzmann simulations for micro-macro interactions during isothermal drying of bundle of capillaries. Chem. Engng Sci. 220, 115634.CrossRefGoogle Scholar
Peng, C., Ayala, O.M. & Wang, L.-P. 2019 A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow. J. Fluid Mech. 875, 10961144.CrossRefGoogle Scholar
Peng, C., Ayala, O.M. & Wang, L.-P. 2020 Flow modulation by a few fixed spherical particles in a turbulent channel flow. J. Fluid Mech. 884, A15.CrossRefGoogle Scholar
Peng, D.-Y. & Robinson, D.B. 1976 A new two-constant equation of state. Ind. Engng Chem. Fundam. 15 (1), 5964.CrossRefGoogle Scholar
Pöschel, T. & Schwager, T. 2005 Computational Granular Dynamics: Models and Algorithms. Springer Science & Business Media.Google Scholar
Qian, T., Wang, X.-P. & Sheng, P. 2006 A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333360.CrossRefGoogle Scholar
Qian, Y.-H., d'Humières, D. & Lallemand, P. 1992 Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17 (6), 479.CrossRefGoogle Scholar
Qin, F., Fei, L., Zhao, J., Kang, Q., Derome, D. & Carmeliet, J. 2023 Lattice Boltzmann modelling of colloidal suspensions drying in porous media accounting for local nanoparticle effects. J. Fluid Mech. 963, A26.CrossRefGoogle Scholar
Rahimi, A., Metzger, T., Kharaghani, A. & Tsotsas, E. 2016 Interaction of droplets with porous structures: pore network simulation of wetting and drying. Dry. Technol. 34 (9), 11291140.CrossRefGoogle Scholar
Saito, S., De Rosis, A., Fei, L., Luo, K.H., Ebihara, K.-i., Kaneko, A. & Abe, Y. 2021 Lattice Boltzmann modeling and simulation of forced-convection boiling on a cylinder. Phys. Fluids 33 (2), 023307.CrossRefGoogle Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47 (3), 18151819.CrossRefGoogle ScholarPubMed
Shan, X. & Chen, H. 1994 Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49 (4), 29412948.CrossRefGoogle ScholarPubMed
Soundararajan, K.K. 2015 Multi-scale multiphase modelling of granular flows. PhD thesis, University of Cambridge.Google Scholar
Succi, S. 2015 Lattice Boltzmann 2038. Europhys. Lett. 109 (5), 50001.CrossRefGoogle Scholar
Succi, S. 2018 The Lattice Boltzmann Equation: for Complex States of Flowing Matter. Oxford University Press.CrossRefGoogle Scholar
Suzuki, K. & Inamuro, T. 2011 Effect of internal mass in the simulation of a moving body by the immersed boundary method. Comput. Fluids 49 (1), 173187.CrossRefGoogle Scholar
Vella, D., Lee, D.-G. & Kim, H.-Y. 2006 Sinking of a horizontal cylinder. Langmuir 22 (7), 29722974.CrossRefGoogle ScholarPubMed
Vella, D. & Mahadevan, L. 2005 The “cheerios effect”. Am. J. Phys. 73 (9), 817825.CrossRefGoogle Scholar
Verlet, L. 1967 Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159 (1), 98.CrossRefGoogle Scholar
Wang, G., Fei, L. & Luo, K.H. 2020 Lattice Boltzmann simulation of water droplet impacting a hydrophobic plate with a cylindrical pore. Phys. Rev. Fluids 5 (8), 083602.CrossRefGoogle Scholar
Wang, G., Fei, L. & Luo, K.H. 2021 Lattice Boltzmann simulation of a water droplet penetrating a micropillar array in a microchannel. Phys. Fluids 33 (4), 043308.Google Scholar
Wen, B., Li, H., Zhang, C. & Fang, H. 2012 Lattice-type-dependent momentum-exchange method for moving boundaries. Phys. Rev. E 85 (1), 016704.CrossRefGoogle ScholarPubMed
Wen, B., Zhang, C., Tu, Y., Wang, C. & Fang, H. 2014 Galilean invariant fluid–solid interfacial dynamics in lattice Boltzmann simulations. J. Comput. Phys. 266, 161170.CrossRefGoogle Scholar
Xu, A. & Li, B.-T. 2023 Multi-GPU thermal lattice Boltzmann simulations using OpenACC and MPI. Intl J. Heat Mass Transfer 201, 123649.CrossRefGoogle Scholar
Yao, Y., Liu, Y., Zhong, X. & Wen, B. 2022 Multiphase curved boundary condition in lattice Boltzmann method. Phys. Rev. E 106, 015307.CrossRefGoogle ScholarPubMed
Yu, D., Mei, R., Luo, L.-S. & Shyy, W. 2003 a Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39 (5), 329367.CrossRefGoogle Scholar
Yu, D., Mei, R. & Shyy, W. 2003 b A unified boundary treatment in lattice Boltzmann method. In 41st Aerospace Sciences Meeting and Exhibit, p. 953. AIAA.CrossRefGoogle Scholar
Yu, Y., Li, Q. & Wen, Z.X. 2020 Modified curved boundary scheme for two-phase lattice Boltzmann simulations. Comput. Fluids 208, 104638.CrossRefGoogle Scholar
Yuan, P. & Schaefer, L. 2006 Equations of state in a lattice Boltzmann model. Phys. Fluids 18 (4), 042101.CrossRefGoogle Scholar
Zhang, X., Liu, H. & Zhang, J. 2020 A new capillary force model implemented in lattice Boltzmann method for gas–liquid–solid three-phase flows. Phys. Fluids 32 (10), 103301.CrossRefGoogle Scholar
Zhao, S.-C., de Jong, R. & van der Meer, D. 2017 Liquid-grain mixing suppresses droplet spreading and splashing during impact. Phys. Rev. Lett. 118, 054502.CrossRefGoogle ScholarPubMed
Zhao, S.-C., de Jong, R. & van der Meer, D. 2019 Formation of a hidden cavity below droplets impacting on a granular substrate. J. Fluid Mech. 880, 5972.CrossRefGoogle Scholar

Fei et al. Supplementary Movie 1

Droplet impact on a deformable porous medium at Re=240 and We=4.4 with contact angle θ=90°.

Download Fei et al. Supplementary Movie 1(Video)
Video 1.8 MB

Fei et al. Supplementary Movie 2

Droplet impact on a deformable porous medium at Re=240 and We=4.4 with contact angle θ=60°.

Download Fei et al. Supplementary Movie 2(Video)
Video 1.8 MB

Fei et al. Supplementary Movie 3

Droplet impact on a deformable porous medium at Re=240 and We=33.6 with contact angle θ=90°.

Download Fei et al. Supplementary Movie 3(Video)
Video 1.4 MB

Fei et al. Supplementary Movie 4

Droplet impact on a deformable porous medium at Re=240 and We=33.6 with contact angle θ=60°.

Download Fei et al. Supplementary Movie 4(Video)
Video 1.6 MB

Fei et al. Supplementary Movie 5

Droplet impact on a deformable porous medium at Re=240 and We=151.3 with contact angle θ=90°.

Download Fei et al. Supplementary Movie 5(Video)
Video 1.3 MB

Fei et al. Supplementary Movie 6

Droplet impact on a deformable porous medium at Re=240 and We=151.3 with contact angle θ=60°.
Download Fei et al. Supplementary Movie 6(Video)
Video 1.3 MB

Fei et al. Supplementary Movie 7

Droplet impact on a deformable porous medium at Re=500 and We=250 with contact angle θ=60°.

Download Fei et al. Supplementary Movie 7(Video)
Video 2.4 MB