Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T00:58:59.072Z Has data issue: false hasContentIssue false

Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching

Published online by Cambridge University Press:  26 January 2015

A. W. Mackowski*
Affiliation:
Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
C. H. K. Williamson
Affiliation:
Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
*
Email address for correspondence: awm63@cornell.edu

Abstract

We experimentally investigate the thrust and propulsive efficiency of a NACA 0012 airfoil undergoing oscillating pitching motion at a Reynolds number of $1.7\times 10^{4}$. While previous studies have computed thrust and power indirectly through measurements of momentum deficit in the object’s wake, we use a pair of force transducers to measure fluid forces directly. Our results help solidify a variety of experimental, theoretical and computational answers to this classical problem. We examine trends in propulsive performance with flapping frequency, amplitude and Reynolds number. We also examine the measured unsteady forces on the airfoil and compare them with linear theory dating from the first half of the 20th century. While linear theory significantly overpredicts the mean thrust on the foil, its prediction for the amplitude and phase of the time-varying component is surprisingly accurate. We conclude with evidence that the thrust force produced by the pitching airfoil is largely insensitive to most wake vortex arrangements.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360 (1), 4172.CrossRefGoogle Scholar
Ashraf, M. A., Young, J. & Lai, J. C. S. 2012 Oscillation frequency and amplitude effects on plunging airfoil propulsion and flow periodicity. AIAA J. 50 (11), 23082324.CrossRefGoogle Scholar
Bohl, D. G. & Koochesfahani, M. M. 2009 Mtv measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. J. Fluid Mech. 620 (1), 6388.CrossRefGoogle Scholar
Bryant, M. & Garcia, E. 2009 Energy harvesting: a key to wireless sensor nodes. In Second International Conference on Smart Materials and Nanotechnology in Engineering, vol. 1, Proc. SPIE, vol. 7493, p. 74931W. International Society for Optics and Photonics.CrossRefGoogle Scholar
Buchholz, J. H. J. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603 (1), 331365.CrossRefGoogle ScholarPubMed
Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309344.CrossRefGoogle Scholar
Eloy, C. 2012 Optimal Strouhal number for swimming animals. J. Fluids Struct. 30, 205218.CrossRefGoogle Scholar
Garner, H. C., Rogers, E. W. E., Acum, W. E. A. & Maskell, E. C.1966 Subsonic wind tunnel wall corrections. Tech. Rep. NATO Advisory Group for Aerospace Research and Development, Paris.Google Scholar
Garrick, I. E.1936 Propulsion of a flapping and oscillating airfoil. NACA Tech. Rep. 567.Google Scholar
Godoy-Diana, R., Aider, J.-L. & Wesfreid, J. E. 2008 Transitions in the wake of a flapping foil. Phys. Rev. E 77, 016308.CrossRefGoogle ScholarPubMed
Hall, K. C. & Hall, S. R. 2001 A rational engineering analysis of the efficiency of flapping flight. In Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications (ed. Mueller, T. J.), vol. 195, pp. 249274. AIAA.Google Scholar
Heathcote, S. & Gursul, I. 2007 Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J. 45 (5), 10661079.CrossRefGoogle Scholar
Jones, K. D., Bradshaw, C. J., Papadopoulos, J. & Platzer, M. F. 2005 Bio-inspired design of flapping-wing micro air vehicles. Aeronaut. J. 109 (1098), 385393.CrossRefGoogle Scholar
Jones, K. D., Dohring, C. M. & Platzer, M. F. 1998 Experimental and computational investigation of the Knoller–Betz effect. AIAA J. 36 (7), 12401246.CrossRefGoogle Scholar
Jones, K. D. & Platzer, M. F. 1997 Numerical computation of flapping-wing propulsion and power extraction. In Proceedings 35th Aerospace Sciences Meeting. AIAA.Google Scholar
Kang, C.-K., Baik, Y. S., Bernal, L., Ol, M. V. & Shyy, W. 2009 Fluid dynamics of pitching and plunging airfoils of Reynolds number between $1\times 10^{4}$ and $6\times 10^{4}$ . In Proceedings 47th Aerosp. Sci. Meeting. AIAA.Google Scholar
von Kármán, T. & Burgers, J. M. 1935 General aerodynamic theory – perfect fluids. In Aerodynamic Theory (ed. Durand, W. F.), vol. II. Springer.Google Scholar
Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27 (9), 12001205.CrossRefGoogle Scholar
Laitone, E. V. 1997 Wind tunnel tests of wings at Reynolds numbers below 70 000. Exp. Fluids 23 (5), 405409.CrossRefGoogle Scholar
Lian, Y. 2010 Blockage effects on the aerodynamics of a pitching wing. AIAA J. 48 (12), 27312738.CrossRefGoogle Scholar
Lighthill, M. J. 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44 (02), 265301.CrossRefGoogle Scholar
McCroskey, W. J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14 (1), 285311.CrossRefGoogle Scholar
McKinney, W. & DeLaurier, J. 1981 Wingmill: an oscillating-wing windmill. AIAA J. Energy 5 (2), 109115.CrossRefGoogle Scholar
Platzer, K. D. & Jones, M. F. 2000 Flapping-wing propulsion for a micro air vehicle. In Proceedings 38th Aerosp. Sci. Meeting. AIAA.Google Scholar
Platzer, M. F., Jones, K. D., Young, J. & Lai, J. C. S. 2008 Flapping wing aerodynamics: progress and challenges. AIAA J. 46 (9), 21362149.CrossRefGoogle Scholar
Ramamurti, R. & Sandberg, W. 2001 Simulation of flow about flapping airfoils using finite element incompressible flow solver. AIAA J. 39 (2), 253260.CrossRefGoogle Scholar
Read, D. A., Hover, F. S. & Triantafyllou, M. S. 2003 Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct. 17 (1), 163183.CrossRefGoogle Scholar
Rozhdestvensky, K. V. & Ryzhov, V. A. 2003 Aerohydrodynamics of flapping-wing propulsors. Prog. Aerosp. Sci. 39 (8), 585633.CrossRefGoogle Scholar
Schnipper, T., Andersen, A. & Bohr, T. 2009 Vortex wakes of a flapping foil. J. Fluid Mech. 633 (1), 411423.CrossRefGoogle Scholar
Sheldahl, R. E. & Klimas, P. C.1981 Aerodynamic characteristics of seven symmetrical airfoil sections through $180^{\circ }$ angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Tech. Rep. 80–2114, Sandia National Labs, Albuquerque, NM.CrossRefGoogle Scholar
Streitlien, K. & Triantafyllou, G. S. 1998 On thrust estimates for flapping foils. J. Fluids Struct. 12 (1), 4755.CrossRefGoogle Scholar
Theodorsen, T.1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. 496.Google Scholar
Thielicke, W. & Stamhuis, E. J.2012 PIVLab – time-resolved digital particle image velocimetry tool for MATLAB. Published under the BSD license, programmed with MATLAB. Available at: http://pivlab.blogspot.co.uk/.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7 (2), 205224.CrossRefGoogle Scholar
Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P. 2000 Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech. 32 (1), 3353.CrossRefGoogle Scholar
Tuncer, I. H. & Platzer, M. F. 1996 Thrust generation due to airfoil flapping. AIAA J. 34 (2), 324331.CrossRefGoogle Scholar
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2 (4), 355381.CrossRefGoogle Scholar
Young, J. & Lai, J. C. S. 2004 Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA J. 42 (10), 20422052.CrossRefGoogle Scholar