Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T06:00:56.706Z Has data issue: false hasContentIssue false

Direct numerical simulation analysis of local flow topology in a particle-laden turbulent channel flow

Published online by Cambridge University Press:  02 June 2010

M. J. BIJLARD
Affiliation:
J. M. Burgerscentrum, Delft University of Technology, Kramers Laboratorium, Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands
R. V. A. OLIEMANS
Affiliation:
J. M. Burgerscentrum, Delft University of Technology, Kramers Laboratorium, Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands
L. M. PORTELA
Affiliation:
J. M. Burgerscentrum, Delft University of Technology, Kramers Laboratorium, Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands
G. OOMS*
Affiliation:
J. M. Burgerscentrum, Delft University of Technology, Laboratory for Aero- and Hydrodynamics, Leeghwaterstraat 21, 2628 CB Delft, The Netherlands
*
Email address for correspondence: g.ooms@tudelft.nl

Abstract

The results of point-particle Eulerian–Lagrangian direct numerical simulation (DNS) calculations of dilute particle-laden turbulent channel flow are used to study the effect of the particles on the local flow topology. It is found that in the viscous sublayer, the flow becomes increasingly more two-dimensional as the two-way coupling effect (due to interaction between particles and fluid flow) increases with increasing particle load. Beyond the viscous sublayer the modifications in flow topology are not strongly related to the preferential concentration of particles in the flow field, which is in contrast to previous channel flow simulations. The effect of particles on the turbulent flow beyond the viscous sublayer is mostly a result of the overall changing near-wall dynamics of the fluid flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, A. M. & Elghobashi, S. 2000 On the mechanisms of modifying the structure of turbulent homogeneous shear flow by dispersed particles. Phys. Fluids 12 (11), 29062930.CrossRefGoogle Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Bijlard, M. J. 2009 Analysis of particle-induced turbulence modulation and two-fluid closures by DNS channel flow. PhD thesis, Delft University of Technology, Delft, the Netherlands.Google Scholar
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.CrossRefGoogle Scholar
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.CrossRefGoogle Scholar
Chacín, J. M. & Cantwell, B. J. 2000 Dynamics of a low-Reynolds-number turbulent boundary layer. J. Fluid Mech. 404, 87115.CrossRefGoogle Scholar
Chacín, J. M., Cantwell, B. J. & Kline, S. J. 1996 Study of turbulent boundary layer structure using the invariants of the velocity gradient tensor. Exp. Therm. Fluid Sci. 13, 308317.CrossRefGoogle Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. Part I. Turbulence modification. Phys. Fluids A 5 (7), 17901801.CrossRefGoogle Scholar
Li, Y., McLaughlin, J. B., Kontomaris, K. & Portela, L. M. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13 (10), 29572967.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K. D., Cargnelutti, L. M. & Portela, L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34, 879893.CrossRefGoogle Scholar
Ooi, A., Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.CrossRefGoogle Scholar
Perry, A. E. & Chong, M. S. 1994 Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53, 357374.CrossRefGoogle Scholar
Picciotto, M., Marchioli, C. & Soldati, A. 2005 Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17, 098101.CrossRefGoogle Scholar
Portela, L. M. & Oliemans, R. V. A. 2003 Eulerian–Lagrangian DNS/LES of particle-turbulence interactions in wall-bounded flows. Intl J. Numer. Methods Fluids 43, 10451065.CrossRefGoogle Scholar
Rouson, D. W. I. 1997 A direct numerical simulation of a particle-laden turbulent channel flow. PhD thesis, Mechanical Engineering Department, Stanford University, Palo Alto, California.Google Scholar
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.CrossRefGoogle Scholar
Soldati, A. 2005 Particles turbulence interactions in boundary layers. Z. Angew. Math. Mech. 85 (10), 683699.CrossRefGoogle Scholar
Soria, J. & Cantwell, B. J. 1994 Topological visualization of focal structures in free shear flows. Appl. Sci. Res. 53, 375386.CrossRefGoogle Scholar
Soria, J., Ooi, A. & Chong, M. S. 1997 Volume integrals of the Q AR A invariants of the velocity gradient tensor in incompressible flows. Fluid Dyn. Res. 19, 219233.CrossRefGoogle Scholar
Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2), 871884.CrossRefGoogle Scholar
Squires, K. D. & Eaton, J. K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2 (7).CrossRefGoogle Scholar
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3 (5), 11691178.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20 (053305).CrossRefGoogle Scholar
Wang, Q. & Squires, K. D. 1996 Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids 8 (5), 12071223.CrossRefGoogle Scholar
Wray, A. A. & Hunt, J. C. R. 1989 Algorithms for classification of turbulent structures. In Topological Fluid Mechanics; Proceedings of the IUTAM Topology of Fluid Mechanics, Cambridge, UK, 13–18 August 1989 (ed. Moffat, H. K.), pp. 95104. Cambridge University Press.Google Scholar
Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji, Y. 2001 Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303334.CrossRefGoogle Scholar