Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T19:59:20.170Z Has data issue: false hasContentIssue false

Direct numerical simulations of turbulence and hyporheic mixing near sediment–water interfaces

Published online by Cambridge University Press:  03 April 2020

Guangchen Shen*
Affiliation:
Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
Junlin Yuan
Affiliation:
Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
Mantha S. Phanikumar
Affiliation:
Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
*
Email address for correspondence: shenguan@msu.edu

Abstract

The effects of bed roughness, isolated from those of bed permeability, on the vertical transport processes across the sediment–water interface (SWI) are not well understood. We compare the statistics and structure of the mean flow and turbulence in open-channel flows with a friction Reynolds number of 395 and a permeability Reynolds number of 2.6 over sediments with either regular or random grain packing at the SWI. The regular sediment interface is formed by cubic packing of spheres aligned with the mean-velocity direction. It is shown that, even in the absence of any bedform, the subtle details of the particle roughness alone can significantly affect the dynamics of turbulence and the time-mean flow. Such effects translate to large differences in penetration depths, apparent permeabilities, vertical mass fluxes and subsurface flow paths of passive scalars. The less organized distribution of mean recirculation regions near the interface with a random packing leads to a more isotropic form-induced stress tensor. The augmented wall-normal form-induced fluctuations play a significant role in increasing mixing and wall-normal mass and momentum exchange.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amadio, G.2014 Particle packings and microstructure modeling of energetic materials. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Bencala, K. E. 2000 Hyporheic zone hydrological processes. Hydrol. Process. 14 (15), 27972798.3.0.CO;2-6>CrossRefGoogle Scholar
Bertuzzo, E., Maritan, A., Gatto, M., Rodriguez-Iturbe, I. & Rinaldo, A. 2007 River networks and ecological corridors: reactive transport on fractals, migration fronts, hydrochory. Water Resour. Res. 43 (4), W04419.Google Scholar
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L. & Worman, A. 2014 Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications. Rev. Geophys. 52, 603679.CrossRefGoogle Scholar
Breugem, W. & Boersma, B. 2005 Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17 (2), 025103.CrossRefGoogle Scholar
Breugem, W. P., Boersma, B. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.CrossRefGoogle Scholar
Brinkman, H. 1949 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1 (1), 2734.CrossRefGoogle Scholar
Cardenas, M. B. 2015 Hyporheic zone hydrologic science: a historical account of its emergence and a prospectus. Water Resour. Res. 51, 36013616.CrossRefGoogle Scholar
Carman, P. 1937 Fluid flow through granular beds. Chem. Engng Res. Des. 75, S32S48.CrossRefGoogle Scholar
Christensen, K. T. & Wu, Y. 2005 Characteristics of vortex organization in the outer layer of wall turbulence. In Proceedings of the 4th International Symposium on Turbulence and Shear Flow Phenomena, vol. 3, pp. 10251030. Williamsburg.Google Scholar
Cossu, C. & Hwang, Y. 2018 Self-sustaining processes at all scales in wall-bounded turbulent shear flows. Phil. Trans. R. Soc. Lond. A 375, 20160088.Google Scholar
Edwards, D. A., Shapiro, M., Bar-Yoseph, P. & Shapira, M. 1990 The influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylinders. Phys. Fluids A 2, 4555.CrossRefGoogle Scholar
Elliott, A. H. & Brooks, N. H. 1997 Transfer of nonsorbing solutes to a streambed with bed forms: theory. Water Resour. Res. 33 (1), 123136.CrossRefGoogle Scholar
Fang, H., Han, X., He, G. & Dey, S. 2018 Influence of permeable beds on hydraulically macro-rough flow. J. Fluid Mech. 847, 522590.CrossRefGoogle Scholar
Goharzadeh, A., Khalili, A. & Jørgensen, B. B. 2005 Transition layer thickness at a fluid–porous interface. Phys. Fluids 17 (5), 057102.CrossRefGoogle Scholar
Gomez-Velez, J. D., Harvey, J. W., Cardenas, M. B. & Kiel, B. 2015 Denitrification in the Mississippi River network controlled by flow through river bedforms. Nat. Geosci. 8 (12), 941.CrossRefGoogle Scholar
Han, X., Fang, H., He, G. & Reible, D. 2018 Effects of roughness and permeability on solute transfer at the sediment water interface. Water Res. 129, 3950.Google ScholarPubMed
Hassanizadeh, S. M. & Gray, W. G. 1987 High velocity flow in porous media. Trans. Porous Med. 2, 521531.Google Scholar
Huang, H. & Ayoub, J. A. 2006 Applicability of the Forchheimer equation for non-Darcy flow in porous media. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.Google Scholar
Javadpour, F. et al. 2009 Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Petrol. Technol. 48 (08), 1621.CrossRefGoogle Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Kalbus, E., Schmidt, C., Molson, J., Reinstorf, F. & Schirmer, M. 2009 Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol. Earth Syst. Sci. 13 (1), 6977.CrossRefGoogle Scholar
Keating, A., Piomelli, U., Bremhorst, K. & Nešić, S. 2004 Large-eddy simulation of heat transfer downstream of a backward-facing step. J. Turbul. 5, N20.Google Scholar
Khirevich, S.2011, High-performance computing of flow, diffusion, and hydrodynamic dispersion in random sphere packings. PhD thesis, Philipps-Universität Marburg.Google Scholar
Kim, T., Blois, G., Best, J. L. & Christensen, K. T. 2018 Experimental study of turbulent flow over and within cubically packed walls of spheres: effects of topography, permeability and wall thickness. Intl J. Heat Fluid Flow 73, 1629.CrossRefGoogle Scholar
Kong, F. & Schetz, J. 1982 Turbulent boundary layer over porous surfaces with different surface geometries. In 20th Aerospace Sciences Meeting, p. 30.Google Scholar
Kozeny, J. 1927 On capillary movement of water in soil. German, Sitzber Akad. Wiss. Wien 136, 271306.Google Scholar
Krogstad, P.-Å. & Antonia, R. A. 1994 Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.CrossRefGoogle Scholar
Krogstad, P.-Å. & Efros, V. 2012 About turbulence statistics in the outer part of a boundary layer developing over two- dimensional surface roughness. Phys. Fluids 24, 075112.CrossRefGoogle Scholar
Kuwata, Y. & Suga, K. 2016a Lattice Boltzmann direct numerical simulation of interface turbulence over porous and rough walls. Intl J. Heat Fluid Flow 61, 145157.CrossRefGoogle Scholar
Kuwata, Y. & Suga, K. 2016b Transport mechanism of interface turbulence over porous and rough walls. Flow Turbul. Combust. 97, 10711093.CrossRefGoogle Scholar
Laube, G., Schmidt, C. & Fleckenstein, J. H. 2018 The systematic effect of streambed conductivity heterogeneity on hyporheic flux and residence time. Adv. Water Resour. 122, 6069.CrossRefGoogle Scholar
Liu, X. & Katz, J. 2018 Pressure rate of strain, pressure diffusion, and velocity pressure gradient tensor measurements in a cavity flow. AIAA J. 56 (10), 38973914.CrossRefGoogle Scholar
Manes, C., Poggi, D. & Ridolfi, L. 2011 Turbulent boundary layers over permeable walls: scaling and near-wall structure. J. Fluid Mech. 687, 141170.CrossRefGoogle Scholar
Manes, C., Pokrajac, D., McEwan, I. & Nikora, V. 2009a Turbulence structure of open channel flows over permeable and impermeable beds: a comparative study. Phys. Fluids 21, 125109.CrossRefGoogle Scholar
Manes, C., Pokrajac, D., McEwan, I. & Nikora, V. 2009b Turbulence structure of open channel flows over permeable and impermeable beds: a comparative study. Phys. Fluids 21 (12), 125109.CrossRefGoogle Scholar
Mignot, E., Bartheleemy, E. & Hurther, D. 2009 Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J. Fluid Mech. 618, 279303.CrossRefGoogle Scholar
Mittal, R., Dong, H., Bozkurttas, M., Najjar, F. M., Vargas, A. & Von Loebbecke, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227 (10), 48254852.CrossRefGoogle ScholarPubMed
Nikora, V. I., Goring, D. G. & Biggs, B. J. 1998 On gravel-bed roughness characterization. Water Resour. Res. 34, 517527.CrossRefGoogle Scholar
Nikora, V., Goring, D., McEwan, I. & Griffiths, G. 2001 Spatially averaged open-channel flow over rough bed. J. Hydraul. Engng ASCE 127, 123133.CrossRefGoogle Scholar
Packman, A., Salehin, M. & Zaramella, M. 2004 Hyporheic exchange with gravel beds: basic hydrodynamic interactions and bedform-induced advective flows. J. Hydraul. Engng ASCE 130, 647656.CrossRefGoogle Scholar
Padhi, E., Penna, N., Dey, S. & Gaudio, R. 2018 Hydrodynamics of water-worked and screeded gravel beds: a comparative study. Phys. Fluids 30, 085105.Google Scholar
Painter, S. L. 2018 Multiscale framework for modeling multicomponent reactive transport in stream corridors. Water Resour. Res. 54 (10), 72167230.CrossRefGoogle Scholar
Phanikumar, M. S., Aslam, I., Shen, C., Long, D. T. & Voice, T. C. 2007 Separating surface storage from hyporheic retention in natural streams using wavelet decomposition of acoustic doppler current profiles. Water Resour. Res. 43 (5), W05406.Google Scholar
Plimpton, S. 1995 Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1), 119.CrossRefGoogle Scholar
Pokrajac, D. & Manes, C. 2009 Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Trans. Porous Med. 78, 367383.Google Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall boundary layers. Appl. Mech. Rev. 44, 125.CrossRefGoogle Scholar
Raupach, M. R. & Shaw, R. H. 1982 Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22, 7990.CrossRefGoogle Scholar
Roche, K. R., Li, A., Bolster, D., Wagner, G. J. & Packman, A. I. 2019 Effects of turbulent hyporheic mixing on reach-scale transport. Water Resour. Res. 55, 37803795.Google Scholar
Scotti, A. 2006 Direct numerical simulation of turbulent channel flows with boundary roughened with virtual sandpaper. Phys. Fluids 18, 031701.CrossRefGoogle Scholar
Stoesser, T., Frohlich, J. & Rodi, W. 2007 Turbulent open-channel flow over a permeable bed. In Proceedings of the Congress-International Association for Hydraulic Research, vol. 32, p. 189.Google Scholar
Stubbs, A., Stoesser, T. & Bockelmann-Evans, B. 2018 Developing an approximation of a natural, rough gravel riverbed both physically and numerically. Geosciences 8 (12), 449.CrossRefGoogle Scholar
Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S. & Kaneda, M. 2010 Effects of wall permeability on turbulence. Intl J. Heat Fluid Flow 31 (6), 974984.CrossRefGoogle Scholar
Suga, K., Mori, M. & Kaneda, M. 2011 Vortex structure of turbulence over permeable walls. Intl J. Heat Fluid Flow 32, 586595.CrossRefGoogle Scholar
Taneda, S. 1956 Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan 11 (10), 11041108.CrossRefGoogle Scholar
Voermans, J. J., Ghisalberti, M. & Ivey, G. N. 2017 The variation of flow and turbulence across the sediment–water interface. J. Fluid Mech. 824, 413437.CrossRefGoogle Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2011 Turbulence structure in boundary layers over periodic two- and three-dimensional roughness. J. Fluid Mech. 676, 172190.CrossRefGoogle Scholar
Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Trans. Porous Med. 25 (1), 2761.Google Scholar
Wondzell, S. M. 2006 Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA. Hydrol. Process. 20 (2), 267287.CrossRefGoogle Scholar
Yuan, J. & Aghaei Jouybari, M. 2018 Topographical effects of roughness on turbulence statistics in roughness sublayer. Phys. Rev. Fluids 3, 114603.CrossRefGoogle Scholar
Yuan, J. & Piomelli, U. 2014a Numerical simulations of sink-flow boundary layers over rough surfaces. Phys. Fluids 26, 015113.CrossRefGoogle Scholar
Yuan, J. & Piomelli, U. 2014b Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech. 760, R1.CrossRefGoogle Scholar
Zagni, A. F. & Smith, K. V. 1976 Channel flow over permeable beds of graded spheres. J. Hydraul. Div. ASCE 102, 207222.Google Scholar
Zippe, H. J. & Graf, W. H. 1983 Turbulent boundary-layer flow over permeable and non-permeable rough surfaces. J. Hydraul Res. 21, 5165.CrossRefGoogle Scholar