Published online by Cambridge University Press: 29 March 2006
The distortion of a gas bubble rising steadily in an inviscid incompressible liquid of infinite extent under the action of surface tension forces is investigated theoretically using an appropriate extension of the tensor virial theorem. A convenient parameter for distinguishing the bubble shape is the Weber number W. The virial method leads to an expression relating W and the axis ratio χ, of the transverse and longitudinal axes of the bubble. To first order in W, this relation agrees with the linear theory established by Moore (1959). Also, comparison of the results with his (1965) approximate theory reveals similar features and excellent agreement up to χ = 2. In particular, it confirms his prediction of the existence of a maximum Weber number. Although the present work does not consider the stability of these bubbles, it is interesting to note that the maximum value of 3.271 attained by W differs only by about 2.8% from the critical Weber number obtained by Hartunian & Sears (1957) for the onset of instability.
An approximate method for the study of slightly distorted spheroidal gas bubbles is also formulated and the resulting boundary-value problem solved numerically. The theory is then extended to include gravity. The joint effect of surface tension as well as gravitational forces has not been included in earlier theories. The shapes of the bubbles are traced and compared with the unperturbed spheroids. Comparisons for the velocity of bubble rise are made between the present predictions and some experimental results. In particular the results are compared with recent experimental data for the motion of gas bubbles in liquid metals.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.