Published online by Cambridge University Press: 21 April 2006
A theoretical investigation into the next stage of dynamic stall, concerning the beginnings of eddy shedding from the boundary layer near an aerofoil's leading edge, is described by means of the unsteady viscous-inviscid interacting marginal separation of the boundary layer. The fully nonlinear stage studied in the present paper is shown to match with a previous ‘weakly nonlinear’ regime occurring in the earlier development of the typical eddy from its initially slender thin state. Numerical solutions followed by linear and nonlinear analysis suggest that with confined initial conditions the strong instabilities in the present unsteady flow tend to force a breakdown within a finite time. This leads on subsequently to an unsteady predominantly inviscid stage where the eddy becomes non-slender, spans the entire boundary layer and its evolution then is governed by the Euler equations. This is likely to be followed by the shedding of the eddy from the boundary layer.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.