Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T05:50:54.381Z Has data issue: false hasContentIssue false

Dynamics of a non-spherical microcapsule with incompressible interface in shear flow

Published online by Cambridge University Press:  18 April 2011

P. M. VLAHOVSKA*
Affiliation:
School of Engineering, Brown University, Providence, RI 02912, USA
Y.-N. YOUNG
Affiliation:
Department Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
G. DANKER
Affiliation:
Laboratoire de Spectrométrie Physique, UMR, 140 avenue de la physique, Université Joseph Fourier and CNRS, 38402 Saint Martin d'Heres, France
C. MISBAH
Affiliation:
Laboratoire de Spectrométrie Physique, UMR, 140 avenue de la physique, Université Joseph Fourier and CNRS, 38402 Saint Martin d'Heres, France
*
Email address for correspondence: petia_vlahovska@brown.edu

Abstract

We study the motion and deformation of a liquid capsule enclosed by a surface-incompressible membrane as a model of red blood cell dynamics in shear flow. Considering a slightly ellipsoidal initial shape, an analytical solution to the creeping-flow equations is obtained as a regular perturbation expansion in the excess area. The analysis takes into account the membrane fluidity, area-incompressibility and resistance to bending. The theory captures the observed transition from tumbling to swinging as the shear rate increases and clarifies the effect of capsule deformability. Near the transition, intermittent behaviour (swinging periodically interrupted by a tumble) is found only if the capsule deforms in the shear plane and does not undergo stretching or compression along the vorticity direction; the intermittency disappears if deformation along the vorticity direction occurs, i.e. if the capsule ‘breathes’. We report the phase diagram of capsule motions as a function of viscosity ratio, non-sphericity and dimensionless shear rate.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abkarian, M., Faivre, M. & Viallat, A. 2007 Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98, 188302.CrossRefGoogle ScholarPubMed
Abkarian, M. & Viallat, A. 2008 Vesicles and red blood cells in shear flow. Soft Matt. 4, 653657.CrossRefGoogle ScholarPubMed
Bagchi, P. & Kalluri, R. M. 2009 Dynamics of nonspherical capsules in shear flow. Phys. Rev. E 80, 016307.CrossRefGoogle ScholarPubMed
Barthes-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100, 831853.CrossRefGoogle Scholar
Barthes-Biesel, D. 1991 Role of interfacial properties on the motion and deformation of capsules in shear flow. Physica A 172, 103124.CrossRefGoogle Scholar
Barthes-Biesel, D. 2010 Capsule motion is flow: deformation and membrane buckling. Comptes Rendue Phys. 10, 764774.CrossRefGoogle Scholar
Barthes-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.CrossRefGoogle Scholar
Bławzdziewicz, J., Vlahovska, P. & Loewenberg, M. 2000 Rheology of a dilute emulsion of surfactant-covered spherical drops. Physica A 276, 5080.CrossRefGoogle Scholar
Danker, G., Biben, T., Podgorski, T., Verdier, C. & Misbah, C. 2007 Dynamics and rheology of a dilute suspension of vesicles: higher order theory. Phys. Rev. E 76, 041905.CrossRefGoogle ScholarPubMed
Dimova, R., Aranda, S., Bezlyepkina, N., Nikolov, V., Riske, K. A. & Lipowsky, R. 2006 A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. J. Phys.: Condens. Matter 18, S1151S1176.Google ScholarPubMed
Edwards, D. A., Brenner, H. & Wasan, D. T. 1991 Interfacial Transport Processes and Rheology. Butterworth–Heinemann.Google Scholar
Erni, P., Fischer, P. & Windhab, E. 2005 Deformation of single emulsion drops covered with a viscoelastic adsorbed protein layer in simple shear flow. Appl. Phys. Lett. 87, 244104.CrossRefGoogle Scholar
Finken, R., Kessler, S. & Seifert, U. 2010 Micro-capsules in shear flow. arXiv:1004.4879.CrossRefGoogle Scholar
Finken, R. & Seifert, U. 2006 Wrinkling of microcapsules in shear flow. J. Phys.: Condens. Matter 18, L185L191.Google Scholar
Guido, S. & Tomaiuolo, G. 2009 Microconfined flow behavior of red blood cells in vitro. Comptes Rendus Phys. 10, 751763.CrossRefGoogle Scholar
Helfrich, W. 1973 Elastic properties of lipid bilayers – theory and possible experiments. Z. Naturforsch. 28c, 693703.CrossRefGoogle Scholar
Jeffrey, G. 1923 The motion of ellipsoid particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 169179.Google Scholar
Kantsler, V., Segre, E. & Steinberg, V. 2007 Vesicle dynamics in time-dependent elongation flow: wrinkling instability. Phys. Rev. Lett. 99, 178102.CrossRefGoogle ScholarPubMed
Kantsler, V. & Steinberg, V. 2006 Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96, 036001.CrossRefGoogle ScholarPubMed
Kaoui, B., Farutin, A. & Misbah, C. 2009 Vesicles under simple shear flow: elucidating the role of relevant control parameters. Phys. Rev. E 80, 061905.CrossRefGoogle ScholarPubMed
Keller, S. R. & Skalak, R. 1982 Motion of a tank -reading ellipsoidal particle in shear flow. J. Fluid Mech. 120, 2747.CrossRefGoogle Scholar
Kessler, S., Finken, R. & Seifert, U. 2008 Swinging and tumbling of elastic capsules in shear flow. J. Fluid Mech. 605, 207226.CrossRefGoogle Scholar
Kessler, S., Finken, R. & Seifert, U. 2009 Elastic capsules in shear flow: analytical solutions for constant and time-dependent shear rates. Eur. Phys. J. E 29, 399413.CrossRefGoogle ScholarPubMed
Lac, E., Barthes-Biesel, D., Pelekasis, N. & Tsamopolous, J. 2004 Spherical capsules in three-dimensional unbounded stokes flows: effects of membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.CrossRefGoogle Scholar
Lebedev, V. V., Turitsyn, K. S. & Vergeles, S. S. 2008 Nearly spherical vesicles in an external flow. New J. Phys. 10, 043044.CrossRefGoogle Scholar
Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.CrossRefGoogle ScholarPubMed
Navot, Y. 1998 Elastic membranes in viscous shear flow. Phys. Fluids 10, 18191833.CrossRefGoogle Scholar
Noguchi, H. 2009 Swinging and synchronized rotations of red blood cells in simple shear flow. Phys. Rev. E 80, 021902.CrossRefGoogle ScholarPubMed
Noguchi, H. & Gompper, G. 2007 Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 98, 128103.CrossRefGoogle ScholarPubMed
Olla, P. 2000 The behavior of closed inextensible membranes in linear and quadratic shear flows. Physica A 278, 87106.CrossRefGoogle Scholar
Pozrikidis, C. 2003 Modeling and Simulation of Capsules and Biological Cells. CRC Press.CrossRefGoogle Scholar
Ramanjuan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in shear flow: large deformations and effect of fluid viscosities. J. Fluid Mech. 361, 117143.CrossRefGoogle Scholar
Schwalbe, J., Vlahovska, P. M. & Miksis, M. 2010 Monolayer slip effects on the dynamics of a lipid bilayer vesicle in a viscous flow. J. Fluid Mech. 647, 403419.CrossRefGoogle Scholar
Seifert, U. 1997 Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13137.CrossRefGoogle Scholar
Seifert, U. 1999 Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles. Eur. Phys. J. B 8, 405415.CrossRefGoogle Scholar
Skotheim, J. M. & Secomb, T. W. 2007 Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98, 078301.CrossRefGoogle ScholarPubMed
Sui, Y., Chew, Y. T., Roy, P., Cheng, Y. P. & Low, H. T. 2008 Dynamic motion of red blood cells in simple shear flow. Phys. Fluids 20, 112106.CrossRefGoogle Scholar
Turitsyn, K. S. & Vergeles, S. S. 2008 Wrinkling of vesicles during transient dynamics in elongational flow. Phys. Rev. Lett. 100, 028103.CrossRefGoogle ScholarPubMed
Varshalovich, D. A., Moskalev, A. N. & Kheronskii, V. K. 1988 Quantum Theory of Angular Momentum. World Scientific.CrossRefGoogle Scholar
Vlahovska, P. M. & Gracia, R. 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 75, 016313.CrossRefGoogle ScholarPubMed
Vlahovska, P. M., Podgorski, T. & Misbah, C. 2009 Vesicles and red blood cells in flow: from individual dynamics to rheology. Comptes Rendus Phys. 10, 775789.CrossRefGoogle Scholar
Walter, A., Rehage, H. & Leonhard, H. 2001 Shear induced deformation of microcapsules: shape oscillations and membrane folding. Colloid Surf. A 183–185, 123132.CrossRefGoogle Scholar