Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T10:43:22.541Z Has data issue: false hasContentIssue false

Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 1. Consequences of interference between incident and reflected waves

Published online by Cambridge University Press:  10 December 2008

J. I. ILORETA
Affiliation:
Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740, USAAndrew.Szeri@berkeley.edu
N. M. FUNG
Affiliation:
Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740, USAAndrew.Szeri@berkeley.edu
A. J. SZERI
Affiliation:
Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740, USAAndrew.Szeri@berkeley.edu

Abstract

In this paper we consider the dynamics of bubbles near a kidney stone subjected to a lithotripter shock wave. We address the effect of kidney stone geometry and composition on the cavitation potential near the stone in a shock wave lithotripter. The analysis is based on the previously developed work metric in which the work done on a bubble by the lithotripter shock wave (LSW) is used to determine the maximum radius the bubble achieves. Results of the reflection of the LSW from cylindrical kidney stones with proximal surfaces of varying geometry show that the presence of the stone enhances bubble growth near the stone and decreases growth further away, owing to constructive and destructive interference, respectively. These effects hold true regardless of the shape and curvature of the face, and are strongest for stones with concave faces and higher reflection coefficients. A consequence of the analysis is an elucidation of the mechanism for enhanced cavitation activity and creation of deep craters on the proximal side of a kidney stone, as have been observed in recent experiments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Averkiou, M. A. & Cleveland, R. O. 1999 Modeling of an electrophydraulic lithotripter with the KZK equation. J. Acoust. Soc. Am. 106, 102112.CrossRefGoogle ScholarPubMed
Bailey, M. R., Pishchalnikov, Y. A., Sapozhnikov, O. A., Cleveland, R. O., McAteer, J. A., Miller, N. A., Pishchalnikova, I. V., Connors, B. A., Crum, L. A. & Evan, A. P. 2005 Cavitation detection during shock-wave lithotripsy. Ultrasound Med. Biol. 31, 12451256.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Calvisi, M. L., Iloreta, J. I. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse. J. Fluid Mech. 616, 6397.CrossRefGoogle Scholar
Chaussy, C., Schmiedt, E., Brendel, W., Forssmann, B. & Walther, V. 1982 1st clinical-experience with extracorporeally induced destruction of kidney-stones by shock-waves. J. Urol. 127, 417420.CrossRefGoogle Scholar
Church, C. C. 1989 A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J. Acoust. Soc. Am. 86, 215227.CrossRefGoogle ScholarPubMed
Cleveland, R. O. & Sapozhnikov, O. A. 2005 Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J. Acoust. Soc. Am. 118, 26672676.CrossRefGoogle ScholarPubMed
Dahake, G. & Gracewski, S. M. 1997 Finite difference predictions of p-sv wave propagation inside submerged solids. II. effect of geometry. J. Acoust. Soc. Am. 102, 21382145.CrossRefGoogle ScholarPubMed
Eisenmenger, W. 2001 The mechanisms of stone fragmentation in ESWL. Ultrasound Med. Biol. 27, 683693.CrossRefGoogle ScholarPubMed
Heimbach, D., Munver, R., Zhong, P., Jacobs, J., Hesse, A., Müller, S. C. & Preminger, G. M. 2000 Analysis of Rayleigh–Plesset dynamics for sonoluminescing bubbles. J. Urol. 164, 537544.CrossRefGoogle Scholar
Hilgenfeldt, S., Brenner, M. P., Grossman, S. & Lohse, D. 1998 Analysis of Rayleigh–Plesset dynamics for sonoluminescing bubbles. J. Fluid Mech. 365, 171204.CrossRefGoogle Scholar
Iloreta, J. I., Szeri, A. J., Zhou, Y. F., Sankin, G. & Zhong, P. 2007 Assessment of shock wave lithotripters via cavitation potential. Phys. Fluids 19, 086103.CrossRefGoogle ScholarPubMed
LeVeque, R. J. 1997 Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys. 131, 327353.CrossRefGoogle Scholar
Ohl, C. D. 2002 Cavitation inception following shock wave passage. Phys. Fluids 14, 35123521.CrossRefGoogle Scholar
Ohl, C. D. & Ikink, R. 2003 Shock-wave-induced jetting of micron-sized bubbles. Phys. Rev. Lett. 90, 214502.CrossRefGoogle Scholar
Pishchalnikov, Y. A., Sapozhnikov, O. A., Bailey, M. R., Williams, J. C., Cleveland, R. O., Colonius, T., Crum, L. A., Evan, A. P. & McAteer, J. A. 2003 Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J. Endourol. 17, 435446.CrossRefGoogle ScholarPubMed
Pishchalnikov, Y. A., Sapozhnikov, O. A., Bailey, M. R., Pishchalnikova, I. V., Williams, J. C. & McAteer, J. A. 2005 Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses. Acoust. Res. Lett. Online 6, 280286.CrossRefGoogle ScholarPubMed
Pishchalnikov, Y. A., McAteer, J. A., Williams, J. C., Pishchalnikova, I. V. & Vonderhaar, R. J 2006 Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. J. Endourol. 20, 537541.CrossRefGoogle Scholar
Pittomvils, G., Lafaut, J. P., Vandeursen, H., Boving, R., Baert, L. & Wever, M. 1995 Ultrasonic parameters of concentric laminated uric acid stones. Ultrasonics 33, 463467.CrossRefGoogle Scholar
Pittomvils, G., Lafaut, J. P., Vandeursen, H., Boving, R., Baert, L. & Wever, M. 1996 Ultrasonic velocities of concentric laminated uric acid stones. Ultrasonics 34, 571574.CrossRefGoogle ScholarPubMed
Sankin, G. N., Simmons, W. N., Zhu, S. L. & Zhong, P. 2005 Shock wave interaction with laser-generated single bubbles. Phys. Rev. Lett. 95, 34501.CrossRefGoogle ScholarPubMed
Sass, W., Bräunlich, M., Dreyer, H. P., Matura, E., Folberth, W., Priesmeyer, H. G. & Seifert, J. 1991 The mechanisms of stone disintegration by shock waves. Ultrasound Med. Biol. 17, 239243.CrossRefGoogle ScholarPubMed
Sokolov, D. L., Bailey, M. R. & Crum, L. A. 2001 Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J. Acoust. Soc. Am. 110, 16851695.CrossRefGoogle ScholarPubMed
Sturtevant, B. & Kulkarny, V. A. 1976 The focusing of weak shock waves. J. Fluid Mech. 73, 651671.CrossRefGoogle Scholar
Tanguay, M. 2004 Computation of bubbly cavitating flow in shock wave lithotripsy. PhD thesis, California Institute of Technology.Google Scholar
Xi, X. F. & Zhong, P. 2000 Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock wave generator – in vitro experiments. Ultrasound Med. Biol. 26, 457467.CrossRefGoogle ScholarPubMed
Xi, X. F. & Zhong, P. 2001 Dynamic photoelastic study of the transient stress field in solids during during shock wave lithotrispy. J. Acoust. Soc. Am. 109, 12261239.CrossRefGoogle Scholar
Zabolotskaya, E. A., Ilinskii, Y. A., Meegan, G. D. & Hamilton, M. F. 2004 Bubble interactions in clouds produced during shock wave lithotripsy. In Proce. IEEE Ultrasonics Symp. pp. 890–893.Google Scholar
Zhodi, T. I. & Szeri, A. J. 2005 Fatigue of kidney stones with heterogeneous microstructure subjected to shock-wave lithotripsy. J. Biomed. Mater. Res. B 75, 351358.CrossRefGoogle Scholar
Zhou, Y. F. & Zhong, P. 2003 Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry. J. Acoust. Soc. Am. 113, 586597.CrossRefGoogle ScholarPubMed
Zhou, Y. F. & Zhong, P. 2006 The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter. J. Acoust. Soc. Am. 119, 36253636.CrossRefGoogle ScholarPubMed