Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T06:03:44.720Z Has data issue: false hasContentIssue false

Dynamics of concentrated suspensions of non-colloidal particles in Couette flow

Published online by Cambridge University Press:  13 April 2010

KYONGMIN YEO
Affiliation:
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
MARTIN R. MAXEY*
Affiliation:
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
*
Email address for correspondence: maxey@cfm.brown.edu

Abstract

Fully three-dimensional numerical simulations of concentrated suspensions of O(1000) particles in a Couette flow at zero Reynolds number are performed with the goal of determining the wall effects on concentrated suspensions of non-colloidal particles. The simulations, based on the force-coupling method, are performed for 0.2 ≤ φ ≤ 0.4 and 10 < Ly/a < 30, where φ denotes the volume fraction and Ly and a are, respectively, the channel height and the particle radius. It is shown that the suspensions can be divided into three regions depending on the microstructures; the wall region where a structured particle layering is dominant, the core region in which the suspension field is quasi-homogeneous, and the buffer region which shows the characteristics of both the particle layer and the shear structure. The width of the inhomogeneous region (wall and buffer) is a function of φ and not sensitive to Ly/a, once Ly/a is larger than a threshold. Rheological properties in the inhomogeneous and quasi-homogeneous regions are investigated. The particle stresses are compared with previous rheological models.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbas, M., Climent, E., Simonin, O. & Maxey, M. R. 2006 Dynamics of bidisperse suspensions under Stokes flows: linear shear flow and sedimentation. Phys. Fluids 18, 121504.CrossRefGoogle Scholar
Acrivos, A. 1993 The rheology of concentrated suspensions of non-colloidal particles. In Particulate Two-Phase Flow (ed. Roco, M. C.), p. 169. Butterworth-Heinemann.Google Scholar
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972 a The determination of the bulk stress in a suspension of spherical particles to order c 2. J. Fluid Mech. 56, 401.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972 b The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56, 375.CrossRefGoogle Scholar
Blake, J. R. & Chwang, A. T. 1974 Fundamental singularities of viscous flow. J. Engng Math. 8, 23.CrossRefGoogle Scholar
Bossis, G., Meunier, A. & Sherwood, J. D. 1991 Stokesian dynamics simulations of particle trajectories near a plane. Phys. Fluids A 3, 1853.CrossRefGoogle Scholar
Brady, J. F. 2001 Computer simulation of viscous suspensions. Chem. Engng Sci. 56, 2921.CrossRefGoogle Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluids 20, 111.CrossRefGoogle Scholar
Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103.CrossRefGoogle Scholar
Cichocki, B., Ekiel-Jezewska, M. L. & Wajnryb, E. 1999 Lubrication corrections for three-particle contribution to short-time self-diffusion coefficients in colloidal dispersions. J. Chem. Phys. 111, 3265.CrossRefGoogle Scholar
Corless, R. M. & Jeffrey, D. J. 1988 Stress moments of nearly touching spheres in low Reynolds number flows. J. Appl. Math. Phys. (ZAMP) 39, 874.CrossRefGoogle Scholar
Da Cunha, F. R. & Hinch, E. J. 1996 Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309, 211.CrossRefGoogle Scholar
Dance, S. L., Climent, E. & Maxey, M. R. 2004 Collision barrier effects on the bulk flow in a random suspension. Phys. Fluids 16, 828.CrossRefGoogle Scholar
Dance, S. L. & Maxey, M. R. 2003 a Incorporation of lubrication effects into force-coupling method for particulate two-phase flow. J. Comput. Phys. 189, 212.CrossRefGoogle Scholar
Dance, S. L. & Maxey, M. R. 2003 b Particle density stratification in transient sedimentation. Phys. Rev. E 68, 031403.CrossRefGoogle ScholarPubMed
Dratler, D. I. & Schowalter, W. R. 1996 Dynamic simulation of suspensions of non-Brownian hard spheres. J. Fluid Mech. 325, 53.CrossRefGoogle Scholar
Drazer, G., Koplik, J., Khusid, B. & Acrivos, A. 2002 Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions. J. Fluid Mech. 460, 307.CrossRefGoogle Scholar
Durlofsky, L., Brady, J. F. & Bossis, G. 1987 Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180, 21.CrossRefGoogle Scholar
Einstein, A. 1956 Investigations on the Theory of the Brownian Movement. Dover.Google Scholar
Frankel, N. A. & Acrivos, A. 1967 On the viscosity of a concentrated suspension of solid spheres. Chem. Engng Sci. 22, 847.CrossRefGoogle Scholar
Ganatos, P., Weinbaum, S. & Preffer, R. 1980 A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion. J. Fluid Mech. 99, 739.CrossRefGoogle Scholar
Ganatos, P., Weinbaum, S. & Preffer, R. 1982 Gravitational and zero-drag motion of a sphere of arbitrary size in an inclined channel at low Reynolds number. J. Fluid Mech. 124, 27.CrossRefGoogle Scholar
Hampton, R. E., Mammoli, A. A., Graham, A. L., Tetlow, N. & Altobelli, S. A. 1997 Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41, 621.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
Ingber, M. S., Feng, S., Graham, A. L. & Brenner, H. 2008 The analysis of self-diffusion and migration of rough spheres in nonlinear shear flow using a traction-corrected boundary element method. J. Fluid Mech. 598, 267.CrossRefGoogle Scholar
Jana, S. C., Kapoor, B. & Acrivos, A. 1995 Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles. J. Rheol. 39, 1123.CrossRefGoogle Scholar
Karniadakis, G. E. & Sherwin, S. J. 2005 Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press.CrossRefGoogle Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Komnik, A., Harting, J. & Herrmann, H. J. 2004 Transport phenomena and structuring in shear flow of suspensions near solid walls. J. Stat. Mech.: Theor. Exp., P12003.Google Scholar
Krieger, I. M. & Dogherty, T. J. 1959 A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137.CrossRefGoogle Scholar
Kromkamp, J., van den Ende, D., Kandhai, D., van der Sman, R. & Boom, R. 2006 Lattice Boltzmann simulation of 2d and 3d non-Brownian suspensions in Couette flow. Chem. Engng Sci. 61, 858.CrossRefGoogle Scholar
Kulkarni, P. M. & Morris, J. F. 2008 Suspension properties at finite Reynolds number from simulated shear flow. Phys. Fluids 20, 040602.CrossRefGoogle Scholar
Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415.CrossRefGoogle Scholar
Liu, D., Maxey, M.R. & Karniadakis, G.E. 2002 A fast method for particulate microflows. J. Microelectromech. Syst. 11, 691702.Google Scholar
Liu, D., Maxey, M.R. & Karniadakis, G.E. 2004 Modelling and optimization of colloidal micro-pumps. J. Micromech. Microengng 14, 567575.CrossRefGoogle Scholar
Lomholt, S. & Maxey, M. R. 2003 Force-coupling method for particulate two-phase flow: Stokes flow. J. Comput. Phys. 184, 381.CrossRefGoogle Scholar
Lyon, M. K. & Leal, L. G. 1998 An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J. Fluid Mech. 363, 25.CrossRefGoogle Scholar
Maday, Y., Meiron, D., Patera, A. T. & Rønquist, E. M. 1993 Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations. SIAM J. Sci. Comput. 14, 310.CrossRefGoogle Scholar
Marchioro, M. & Acrivos, A. 2001 Shear-induced particle diffusivities from numerical simulations. J. Fluid Mech. 443, 101.CrossRefGoogle Scholar
Maxey, M. R. & Patel, B. K. 2001 Localized force representations for particles sedimenting in Stokes flow. Intl J. Multiphase Flow 27, 16031626.CrossRefGoogle Scholar
Meunier, A. & Bossis, G. 2004 The influence of surface forces on shear-induced tracer diffusion in mono and bidisperse suspensions. Eur. Phys. J. E 506, 285.Google Scholar
Miller, R. M. & Morris, J. F. 2006 Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J. Non-Newton. Fluid Mech. 135, 149.CrossRefGoogle Scholar
Morris, J. F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43, 1213.CrossRefGoogle Scholar
Nguyen, N.-Q. & Ladd, A. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66, 046708.CrossRefGoogle ScholarPubMed
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157.CrossRefGoogle Scholar
Parsi, F. & Gadala-Maria, F. 1987 Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J. Rheol. 31, 725.CrossRefGoogle Scholar
Sierou, A. & Brady, J. F. 2002 Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46, 1031.CrossRefGoogle Scholar
Sierou, A. & Brady, J. F. 2004 Shear-induced self-diffusion in non-colloidal suspensions. J. Fluid Mech. 506, 285.CrossRefGoogle Scholar
Singh, A. & Nott, P. R. 2000 Normal stresses and microstructure in bounded sheared suspensions via Stokesian dynamics simulations. J. Fluid Mech. 412, 279.CrossRefGoogle Scholar
Smart, J. R. & Leighton, D. T. 1989 Measurement of the hydrodynamic surface roughness of noncolloidal spheres. Phys. Fluids A 1, 52.CrossRefGoogle Scholar
Stickel, J. J. & Powell, R. L. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129.CrossRefGoogle Scholar
Swan, J. W. & Brady, J. F. 2007 Simulation of hydrodynamically interacting particles near a no-slip boundary. Phys. Fluids 19, 113306.CrossRefGoogle Scholar
Yapici, K., Powell, R. L. & Philips, R. J. 2009 Particle migration and suspension structure in steady and oscillatory plane Poiseuille flow. Phys. Fluids 21, 053302.CrossRefGoogle Scholar
Yeo, K. & Maxey, M. R. 2010 Simulation of concentrated suspensions using the force-coupling method. J. Comput. Phys. in press.CrossRefGoogle Scholar
Yurkovetsky, Y. 1997 I. Statistical mechanics of bubbly liquids. II. Behavior of sheared suspensions of non-Brownian particles. PhD thesis, California Institute of Technology, Pasadena.Google Scholar
Zarraga, I. E., Hill, D. A. & Leighton, D. T. 2000 The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44, 185.CrossRefGoogle Scholar
Zurita-Gotor, M., Blawzdziewicz, J. & Wajnryb, E. 2007 Swapping trajectories: a new wall-induced cross-streamline particle migration mechanism in a dilute suspension of spheres. J. Fluid Mech. 592, 447.CrossRefGoogle Scholar