Published online by Cambridge University Press: 28 March 2006
The electrical conductivity of shock-ionized argon produced in an electromagnetic shock tube of low attenuation has been measured at shock speeds of March 10–33, with initial pressures of 0·01–2·0 mm Hg. These measurements extend considerably the range of previous measurements performed with pressure-driven shock tubes. With the higher initial pressures or at the highest Mach numbers the measured conductivity is in good agreement with the previous measurements and with the Spitzer–Harm (1953) formula for the conductivity of a fully ionized gas. With the lower initial pressures (which have not previously been investigated) and at the lower March numbers the conductivity falls to less than half of the Spitzer-Harm value. Order-of-magnitude calculations show that diffusion of atoms, and heat conduction by the plasma atoms from the plasma to the shock-tube walls, can cause appreciable plasma cooling (and hence a reduction of the electrical conductivity) with the lowest initial pressures. This mechanism in conjunction with non-attainment of equilibrium ionization appears to explain the observed diminution in conductivity at the lowest pressures, but not the reduced conductivity at the medium pressures.
Induced e.m.f. flow-velocity measurements indicate steady-flow conditions in the shock tube while photomultiplier measurements of the plasma radiation indicate that the column of shock-heated gas is 10–20 cm long; this latter figure is supported by the conductivity measurements. The fact that the length of the shock-heated gas column is not drastically shortened at low initial pressures in constrast to the work of Duff (1959), Roshko (1960) and Hooker (1961) is attributed to the fact that in this experiment both driver and driven gases are at high temperature.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.