Published online by Cambridge University Press: 08 March 2010
The buoyancy-driven flushing of fluid from a rectangular box via connections in the base and top into quiescent surroundings of uniform density is examined. Our focus is on the transient flows that develop when the interior is either initially stably stratified in two homogeneous layers – a dense layer below a layer at ambient density, or is filled entirely with dense fluid. Experiments with saline stratifications show that four distinct patterns of flow are possible. We classify these patterns in terms of the direction of flow through the base opening and the propensity of replacement fluid through the top opening to induce interfacial mixing. Unidirectional or bidirectional flow through the base opening may occur and within these two flow types either weak or vigorous interfacial mixing. We identify the three controlling geometrical parameters that determine which flow pattern is established, namely the fractional initial layer depths, the relative areas of the top and base openings and the horizontal length scale of the top opening relative to the initial dense layer depth. We show that these parameters may be reduced to two Froude numbers – one based on the fluxes through the base opening and whose value sets the direction of flow, and a second based on conditions at the top opening whose value determines the vigour of interfacial mixing. Theoretical models are developed for predicting the conditions for transition between each flow pattern and expressed as critical values of the Froude numbers identified.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.