Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T05:15:18.676Z Has data issue: false hasContentIssue false

Equilibrium transport in double-diffusive convection

Published online by Cambridge University Press:  28 September 2011

Timour Radko*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA
D. Paul Smith
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA
*
Email address for correspondence: tradko@nps.edu

Abstract

A theoretical model for the equilibrium double-diffusive transport is presented which emphasizes the role of secondary instabilities of salt fingers in saturation of their linear growth. Theory assumes that the fully developed equilibrium state is characterized by the comparable growth rates of primary and secondary instabilities. This assumption makes it possible to formulate an efficient algorithm for computing diffusivities of heat and salt as a function of the background property gradients and molecular parameters. The model predicts that the double-diffusive transport of heat and salt rapidly intensifies with decreasing density ratio. Fluxes are less sensitive to molecular characteristics, mildly increasing with Prandtl number and decreasing with diffusivity ratio . Theory is successfully tested by a series of direct numerical simulations which span a wide range of and .

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baines, P. G. & Gill, A. E. 1969 On thermohaline convection with linear gradients. J. Fluid Mech. 37, 289306.Google Scholar
2.Balmforth, N. J., Ghadge, S. A., Kettapun, A. & Mandre, S. D. 2006 Bounds on double-diffusive convection. J. Fluid Mech. 569, 2950.CrossRefGoogle Scholar
3.Balmforth, N. J. & Young, Y.-N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131167.CrossRefGoogle Scholar
4.Balmforth, N. J. & Young, Y.-N. 2005 Stratified Kolmogorov flow. Part 2. J. Fluid Mech. 528, 2342.Google Scholar
5.Canuto, V. M., Cheng, Y. & Howard, A. M. 2008 A new model for Double Diffusion + Turbulence. Geophys. Res. Lett. 35, L02613.Google Scholar
6.Charbonnel, C. & Zahn, J. 2007 Thermohaline mixing: a physical mechanism governing the photospheric composition of low-mass giants. Astron. Astrophys. 467, L29L32.Google Scholar
7.Gargett, A. E. & Schmitt, R. W. 1982 Observations of salt fingers in the central waters of the eastern North Pacific. J. Geophys. Res. 87, 80178092.CrossRefGoogle Scholar
8.Griffiths, R. W. & Ruddick, B. R. 1980 Accurate fluxes across a salt–sugar finger interface deduced from direct density measurements. J. Fluid Mech. 99, 8595.CrossRefGoogle Scholar
9.Guillot, T. 1999 Interiors of giant planets inside and outside the solar system. Science 286, 7277.Google Scholar
10.Hebert, D. 1988 Estimates of salt-finger fluxes. Deep-Sea Res. 35, 18871901.Google Scholar
11.Holyer, J. Y. 1984 The stability of long, steady, two-dimensional salt fingers. J. Fluid Mech. 147, 169185.Google Scholar
12.Howard, L. N. 1961 Note on a paper of John W. Miles. J. Fluid. Mech. 10, 509512.CrossRefGoogle Scholar
13.Inoue, R., Kunze, E., St Laurent, L., Schmitt, R. W. & Toole, J. M. 2008 Evaluating salt fingering theories. J. Mar. Res. 66, 413440.Google Scholar
14.Kimura, S. & Smyth, W. D. 2007 Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear layer. Geophys. Res. Lett. 34, L21610.Google Scholar
15.Kimura, S. & Smyth, W. D. 2011 Secondary instability of salt sheets. J. Mar. Res. (submitted).CrossRefGoogle Scholar
16.Krishnamurti, R. 2003 Double-diffusive transport in laboratory thermohaline staircases. J. Fluid Mech. 483, 287314.Google Scholar
17.Krishnamurti, R. 2009 Heat, salt and momentum transport in a laboratory thermohaline staircase. J. Fluid Mech. 638, 491506.Google Scholar
18.Kunze, E. 1987 Limits on growing, finite length salt fingers: a Richardson number constraint. J. Mar. Res. 45, 533556.Google Scholar
19.Lambert, R. B. & Demenkow, J. W. 1972 On the vertical transport due to fingers in double diffusive convection. J. Fluid Mech. 54, 627640.Google Scholar
20.Lick, W. 1964 The instability of a fluid layer with time-dependent heating. J. Fluid Mech. 21, 565576.Google Scholar
21.Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.Google Scholar
22.Manfroi, A. & Young, W. 2002 Stability of beta-plane Kolmogorov flow. Physica D 162, 208232.Google Scholar
23.Merryfield, W. J. & Grinder, M. 1999 Salt fingering fluxes from numerical simulations (unpublished manuscript).Google Scholar
24.Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid. Mech. 10, 496508.Google Scholar
25.Proctor, M. R. E. & Holyer, J. Y. 1986 Planform selection in salt fingers. J. Fluid Mech. 168, 241253.Google Scholar
26.Radko, T. 2003 A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497, 365380.Google Scholar
27.Radko, T. 2005 What determines the thickness of layers in a thermohaline staircase? J. Fluid Mech. 523, 7998.CrossRefGoogle Scholar
28.Radko, T. 2008 The double-diffusive modon. J. Fluid Mech. 609, 5985.Google Scholar
29.Radko, T. 2010 Equilibration of weakly nonlinear salt fingers. J. Fluid Mech. 645, 121143.CrossRefGoogle Scholar
30.Radko, T. & Stern, M. E. 1999 Salt fingers in three dimensions. J. Mar. Res. 57, 471502.Google Scholar
31.Radko, T. & Stern, M. E. 2000 Finite amplitude salt fingers in a vertically bounded layer. J. Fluid Mech. 425, 133160.Google Scholar
32.Richardson, L. F. 1920 The supply of energy from and to atmospheric eddies. Proc. R. Soc. A 97, 354373.Google Scholar
33.Robinson, J. L. 1976 Theoretical analysis of convective instability of a growing horizontal thermal boundary layer. Phys. Fluids 19, 778791.Google Scholar
34.Schmitt, R. W. 1979 The growth rate of supercritical salt fingers. Deep-Sea Res. 26A, 2344.Google Scholar
35.Schmitt, R. W. 1983 The characteristics of salt fingers in a variety of fluid systems, including stellar interiors, liquid metals, oceans, and magmas. Phys. Fluids 26, 23732377.CrossRefGoogle Scholar
36.Schmitt, R. W., Ledwell, J. R., Montgomery, E. T., Polzin, K. L. & Toole, J. M. 2005 Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science 308, 685688.CrossRefGoogle ScholarPubMed
37.Schmitt, R. W., Perkins, H., Boyd, J. D. & Stalcup, M. C. 1987 C-SALT: an investigation of the thermohaline staircase in the western tropical North Atlantic. Deep-Sea Res. 34, 16971704.Google Scholar
38.Shen, C. Y. 1995 Equilibrium salt-fingering convection. Phys. Fluids 7, 706717.CrossRefGoogle Scholar
39.Sivashinsky, G. 1985 Weak turbulence in periodic flows. Physica D 17, 243255.Google Scholar
40.Stancliffe, R., Glebbeek, E., Izzard, R. & Pols, O. 2007 Carbon-enhanced metal-poor stars and thermohaline mixing. Astron. Astrophys. 464, L57L60.Google Scholar
41.Stellmach, S., Traxler, A., Garaud, P., Brummell, N. & Radko, T. 2011 Dynamics of fingering convection. Part II. The formation of thermohaline staircases. J. Fluid Mech. 667, 554571.Google Scholar
42.Stern, M. E. 1960 The ‘salt-fountain’ and thermohaline convection. Tellus 12, 172175.Google Scholar
43.Stern, M. E. 1969 Collective instability of salt fingers. J. Fluid Mech. 35, 209218.CrossRefGoogle Scholar
44.Stern, M. E., Radko, T. & Simeonov, J. 2001 Three-dimensional salt fingers in an unbounded thermocline with application to the central ocean. J. Mar. Res. 59, 355390.CrossRefGoogle Scholar
45.Stern, M. E. & Simeonov, J. 2004 Amplitude equilibration of sugar–salt fingers. J. Fluid Mech. 508, 265286.Google Scholar
46.Stern, M. E. & Simeonov, J. 2005 The secondary instability of salt fingers. J. Fluid Mech. 533, 361380.CrossRefGoogle Scholar
47.Stern, M. E. & Turner, J. S. 1969 Salt fingers and convective layers. Deep-Sea Res. 16, 497511.Google Scholar
48.St Laurent, L. & Schmitt, R. W. 1999 The contribution of salt fingers to vertical mixing in the North Atlantic tracer release experiment. J. Phys. Oceanogr. 29, 14041424.Google Scholar
49.Tait, S. & Jaupart, C. 1989 Compositional convection in viscous melts. Nature 338, 571574.CrossRefGoogle Scholar
50.Taylor, J. R. & Veronis, G. 1996 Experiments on doubly-diffusive sugar–salt fingers at high stability ratio. J. Fluid Mech. 321, 315333.Google Scholar
51.Traxler, A., Stellmach, S., Garaud, P., Radko, T. & Brummel, N. 2011 Dynamics of fingering convection. Part I. Small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677, 530553.Google Scholar
52.Vauclair, S. 2004 Metallic fingers and metallicity excess in exoplanets’ host stars: the accretion hypothesis revisited. Astrophys. J. 605, 874879.CrossRefGoogle Scholar