Published online by Cambridge University Press: 09 June 2016
We study the evaporation rate from single drops as well as collections of drops on a solid substrate, both experimentally and theoretically. For a single isolated drop of water, in general the evaporative flux is limited by diffusion of water through the air, leading to an evaporation rate that is proportional to the linear dimension of the drop. Here, we test the limitations of this scaling law for several small drops and for very large drops. We find that both for simple arrangements of drops, as well as for complex drop size distributions found in sprays, cooperative effects between drops are significant. For large drops, we find that the onset of convection introduces a length scale of approximately 20 mm in radius, below which linear scaling is found. Above this length scale, the evaporation rate is proportional to the surface area.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.